Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Production of gene-targeted sheep by nuclear transfer from cultured somatic cells

An Erratum to this article was published on 02 November 2000

Abstract

It is over a decade since the first demonstration that mouse embryonic stem cells could be used to transfer a predetermined genetic modification to a whole animal1. The extension of this technique to other mammalian species, particularly livestock, might bring numerous biomedical benefits, for example, ablation of xenoreactive transplantation antigens, inactivation of genes responsible for neuropathogenic disease and precise placement of transgenes designed to produce proteins for human therapy. Gene targeting has not yet been achieved in mammals other than mice, however, because functional embryonic stem cells have not been derived. Nuclear transfer from cultured somatic cells provides an alternative means of cell-mediated transgenesis2,3. Here we describe efficient and reproducible gene targeting in fetal fibroblasts to place a therapeutic transgene at the ovine α1(I) procollagen (COL1A1) locus and the production of live sheep by nuclear transfer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Diagrams of ovine COL1A1, COLT-1 and COLT-2 targeting vectors and targeted COL1A1 locus.
Figure 2: Analysis of COLT-2 transfected (PDCAAT) cell clones.
Figure 3: Gene-targeted lambs.
Figure 4: Southern analysis of nuclear transfer lambs.

Similar content being viewed by others

References

  1. Thompson, S., Clarke, A. R., Pow, A. M., Hooper, M. L. & Melton, D. W. Germ line transmission and expression of a corrected HPRT gene produced by gene targeting in embryonic stem cells. Cell 56, 313–321 (1989).

    Article  CAS  Google Scholar 

  2. Campbell, K. H. S., McWhir, J., Ritchie, W. A. & Wilmut, I. Sheep cloned by nuclear transfer from a cultured cell line. Nature 389, 64–66 ( 1996).

    Article  ADS  Google Scholar 

  3. Schnieke, A. S. et al. Human Factor IX transgenic sheep produced by transfer of nuclei from transfected fetal fibroblasts. Science 278, 2130–2133 (1997).

    Article  ADS  CAS  Google Scholar 

  4. Cibelli, J. B. et al. Cloned transgenic calves produced from nonquiescent fetal fibroblasts. Science 280, 1256– 1258 (1998).

    Article  ADS  CAS  Google Scholar 

  5. Lin, F. L., Sperle, K. & Sternberg, N. Recombination in mouse L cells between DNA introduced into cells and homologous chromosomal sequences. Proc. Natl Acad. Sci. USA 82, 1391–1395 ( 1985).

    Article  ADS  CAS  Google Scholar 

  6. Smithies, O., Gregg, R. G., Boggs, S. S., Koralewski, M. A. & Kucherlapati, R. S. Insertion of DNA sequences into the human chromosomal β-globin locus by homologous recombination. Nature 317, 230–234 (1985).

    Article  ADS  CAS  Google Scholar 

  7. Yanez, R. J. & Porter, A. C. Therapeutic gene targeting. Gene Ther. 5, 149–159 ( 1998).

    Article  CAS  Google Scholar 

  8. Prockop, D. J. & Kivirikko, K. I. Collagens: molecular biology, diseases, and potentials for therapy. Annu. Rev. Biochem. 64, 403–434 (1995).

    Article  CAS  Google Scholar 

  9. Stacey, A. et al. Perinatal lethal osteogenesis imperfecta in transgenic mice bearing an engineered mutant pro-alpha 1(I) collagen gene. Nature 332, 131–136 (1988).

    Article  ADS  CAS  Google Scholar 

  10. Jang, S. K. et al. A segment of the 5′ nontranslated region of encephalomyocarditis virus RNA directs internal entry of ribosomes during in vitro translation. J. Virol. 62, 2636–2643 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Carver, A. S. et al. Transgenic livestock as bioreactors: stable expression of human alpha-1-antitrypsin by a flock of sheep. Bio/Technology 11, 1263–1270 (1993).

    CAS  PubMed  Google Scholar 

  12. Sedivy, J. M. & Dutriaux, A. Gene targeting and somatic cell genetics: a rebirth or coming of age? Trends Genet. 15, 88–90 (1999).

    Article  CAS  Google Scholar 

  13. Mooslehner, K. & Harbers, K. Two mRNAs of mouse pro a1(I) collagen differ in the size of the 3′-untranslated region. Nucleic Acids Res. 16, 773 ( 1988).

    Article  CAS  Google Scholar 

  14. Chu, M. L., de Wet, W., Bernard, M. & Ramirez, F. Fine structural analysis of the human pro-alpha 1 (I) collagen gene. Promoter structure, AluI repeats, and polymorphic transcripts. J. Biol. Chem. 260, 2315–2320 (1985).

    CAS  PubMed  Google Scholar 

  15. Rippe, R. A., Umezawa, A., Kimball, J. P., Breindl, M. & Brenner, D. A. Binding of upstream stimulatory factor to an E-box in the 3′-flanking region stimulates alpha1(I) collagen gene transcription. J. Biol. Chem. 272, 1753–1760 (1998).

    Article  Google Scholar 

  16. Määttä, A., Ekholm, E. & Penttinen, R. P. Effect of the 3′-untranslated region on the expression levels and mRNA stability of alpha 1(I) collagen gene. Biochim. Biophys. Acta 1260, 294–300 (1995).

    Article  Google Scholar 

  17. Renard, J. P. et al. Lymphoid hypoplasia and somatic cloning. Lancet 353, 1489–1491 ( 1999).

    Article  CAS  Google Scholar 

  18. Hill, J. R. et al. Clinical and pathologic features of cloned transgenic calves and fetuses (13 case studies). Theriogenology 51, 1451–1465 (1999).

    Article  CAS  Google Scholar 

  19. Kono, T. Influence of epigenetic changes during oocyte growth on nuclear reprogramming after nuclear transfer. Reprod. Fertil. Dev. 10, 593–598 (1998).

    Article  CAS  Google Scholar 

  20. McClenaghan, M. et al. Production of human α1-antitrypsin in the milk of transgenic sheep and mice targeting expression of cDNA sequences to the mammary gland. Anim. Biotechnol. 2, 161–176 (1991).

    Article  CAS  Google Scholar 

  21. Warburton, M. J., Kimbell, R., Rudland, P. S., Ferns, S. A. & Barraclough, R. Control of type IV collagen production in rat mammary epithelial and myoepithelial-like cells. J. Cell. Physiol. 128, 76–84 (1986).

    Article  CAS  Google Scholar 

  22. Kay, M. A. & High, K. Gene therapy for the hemophilias. Proc. Natl Acad. Sci. USA 96, 9973– 9975 (1999).

    Article  ADS  CAS  Google Scholar 

  23. Lai, L-W. & Lien, Y-H. Homologous recombination based gene therapy. Exp. Nephrol. 7, 11–14 (1999).

    Article  Google Scholar 

  24. McWhir, J. et al. Selective ablation of differentiated cells permits isolation of embryonic stem cell lines from murine embryos with a non-permissive genetic background. Nat. Genet. 14, 223– 226 (1996).

    Article  CAS  Google Scholar 

  25. Ebert, K. D. et al. Induction of human tissue plasminogen activator in the mammary gland of transgenic goats. Bio/Technology 12, 699–702 (1994).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the contributions of Y. Gibson and K. Mycock for embryo manipulation; E. Emslie and L. Hutchison for molecular biology technical assistance; T. Johnston for protein analysis; and the PPL Therapeutics large animal team for animal husbandry and veterinary procedures. We thank I. Garner and D. Ayares for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A.J. Kind.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McCreath, K., Howcroft, J., Campbell, K. et al. Production of gene-targeted sheep by nuclear transfer from cultured somatic cells. Nature 405, 1066–1069 (2000). https://doi.org/10.1038/35016604

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35016604

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing