Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Palaeotemperature reconstruction from noble gases in ground water taking into account equilibration with entrapped air

Abstract

Noble-gas concentrations in ground water have been used as a proxy for past air temperatures1,2,3,4,5,6,7, but the accuracy of this approach has been limited by the existence of a temperature-independent component of the noble gases in ground water, termed ‘excess air’, whose origin and composition is poorly understood7,8,9. In particular, the evidence from noble gases in a Brazilian aquifer for a cooling of more than 5 °C in tropical America during the Last Glacial Maximum4 has been called into question9. Here we propose a model for dissolved gases in ground water, which describes the formation of excess air by equilibration of ground water with entrapped air in quasi-saturated soils10,11,12. Our model predicts previously unexplained noble-gas data sets, including the concentration of atmospheric helium, and yields consistent results for the non-atmospheric helium isotopes that are used for dating ground water. Using this model of excess air, we re-evaluate the use of noble gases from ground water for reconstructing past temperatures. Our results corroborate the inferred cooling in Brazil during the Last Glacial Maximum4, and indicate that even larger cooling took place at mid-latitudes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: He isotope ratio versus Ne/He elemental ratio of samples from Belgium.
Figure 2: Comparison of new and original noble gas temperatures (NGTs) from Brazil.

Similar content being viewed by others

References

  1. Mazor, E. Paleotemperatures and other hydrological parameters deduced from gases dissolved in groundwaters, Jordan Rift Valley, Israel. Geochem. Cosmochim. Acta 36, 1321–1336 ( 1972).

    Article  ADS  CAS  Google Scholar 

  2. Andrews, J. N. & Lee, D. J. Inert gases in groundwater from the Bunter Sandstone of England as indicators of age and palaeoclimatic trends. J. Hydrol. 41, 233–252 (1979).

    Article  ADS  CAS  Google Scholar 

  3. Stute, M. & Schlosser, P. in Climate Change in Continental Isotopic Records (eds Swart, P. K., Lohmann, K. C., McKenzie, J. & Savin, S.) 89–100 (American Geophysical Union, Washington DC, 1993).

    Google Scholar 

  4. Stute, M. et al. Cooling of tropical Brazil (5 °C) during the Last Glacial Maximum. Science 269, 379– 383 (1995).

    Article  ADS  CAS  Google Scholar 

  5. Beyerle, U. et al. Climate and groundwater recharge during the last glaciation in an ice-covered region. Science 282, 731 –734 (1998).

    Article  ADS  CAS  Google Scholar 

  6. Weyhenmeyer, C. E. et al. Cool glacial temperatures and changes in moisture source recorded in Oman groundwaters. Science 287, 842– 845 (2000).

    Article  ADS  CAS  Google Scholar 

  7. Stute, M. & Schlosser, P. in Environmental Tracers in Subsurface Hydrology (eds Cook, P. & Herczeg, A. L.) 349– 377 (Kluwer Academic, Boston, 2000).

    Book  Google Scholar 

  8. Heaton, T. H. E. & Vogel, J. C. “Excess air” in groundwater. J. Hydrol. 50, 201–216 (1981).

    Article  ADS  CAS  Google Scholar 

  9. Ballentine, C. J. & Hall, C. M. An inverse technique for calculating paleotemperatures and other variables using noble gas concentrations in groundwater. Geochim. Cosmochim. Acta 63, 2315–2336 (1999).

    Article  ADS  CAS  Google Scholar 

  10. Christiansen, J. E. Effect of entrapped air upon the permeability of soils. Soil Sci. 58, 355–365 ( 1944).

    Article  ADS  CAS  Google Scholar 

  11. Fayer, M. J. & Hillel, D. Air encapsulation: 1. Measurement in a field soil. Soil Sci. Soc. Am. J. 50, 568–572 (1986).

    Article  ADS  Google Scholar 

  12. Faybishenko, B. A. Hydraulic behavior of quasi-saturated soils in the presence of entrapped air: Laboratory experiments. Wat. Resour. Res. 31, 2421–2435 (1995).

    Article  ADS  Google Scholar 

  13. Lehmann, B. E. & Purtschert, R. Radioisotope dynamics – the origin and fate of nuclides in groundwater. Appl. Geochem. 12, 727–738 (1997).

    Article  CAS  Google Scholar 

  14. Schlosser, P., Stute, M., Sonntag, C. & Münnich, K. O. Tritiogenic 3He in shallow groundwater. Earth Planet. Sci. Lett. 94, 245–256 (1989).

    Article  ADS  CAS  Google Scholar 

  15. Aeschbach-Hertig, W. et al. A 3H/3He study of ground water flow in a fractured bedrock aquifer. Ground Wat. 36 , 661–670 (1998).

    Article  CAS  Google Scholar 

  16. Dunkle Shapiro, S., Rowe, G., Schlosser, P., Ludin, A. & Stute, M. Tritium-helium 3 dating under complex conditions in hydraulically stressed areas of a buried-valley aquifer. Wat. Resour. Res. 34, 1165–1180 (1998).

    Article  ADS  Google Scholar 

  17. Beyerle, U. et al. Infiltration of river water to a shallow aquifer investigated with 3H/3He, noble gases and CFCs. J. Hydrol. 220, 169–185 (1999).

    Article  ADS  CAS  Google Scholar 

  18. Solomon, D. K., Hunt, A. & Poreda, R. J. Source of radiogenic helium 4 in shallow aquifers: Implications for dating young groundwater. Wat. Resour. Res. 32, 1805–1813 (1996).

    Article  ADS  CAS  Google Scholar 

  19. Osenbrück, K., Lippmann, J. & Sonntag, C. Dating very old pore waters in impermeable rocks by noble gas isotopes. Geochim. Cosmochim. Acta 62, 3041–3045 (1998).

    Article  ADS  Google Scholar 

  20. Heaton, T. H. E., Talma, A. S. & Vogel, J. C. Origin and history of nitrate in confined groundwater in the western Kalahari. J. Hydrol. 62, 243–262 (1983).

    Article  ADS  CAS  Google Scholar 

  21. Wilson, G. B. & McNeill, G. W. Noble gas recharge temperatures and the excess air component. Appl. Geochem. 12, 747–762 (1997).

    Article  CAS  Google Scholar 

  22. Stute, M. & Talma, A. S. in Isotope Techniques in the Study of Environmental Change 307–318 (IAEA, Vienna, Austria, 1998).

    Google Scholar 

  23. Aeschbach-Hertig, W., Peeters, F., Beyerle, U. & Kipfer, R. Interpretation of dissolved atmospheric noble gases in natural waters. Wat. Resour. Res. 35, 2779–2792 ( 1999).

    Article  ADS  CAS  Google Scholar 

  24. Aeschbach-Hertig, W., Stute, M., Schlosser, P., Clark, J. & Reuter, R. Large (9°C) glacial-interglacial temperature difference derived from an aquifer in Maryland (abstr.). Eos 77 , (Suppl.) S157 (1996)

    Google Scholar 

  25. Mamyrin, B. A. & Tolstikhin, I. N. Helium Isotopes in Nature (Elsevier, Amsterdam, 1984).

    Google Scholar 

  26. CLIMAP. The surface of the ice-age Earth. Science 191, 1131– 1137 (1976).

    Article  Google Scholar 

  27. Rostek, F. et al. Reconstructing sea surface temperature and salinity using δ18O and alkenone records. Nature 364, 319–321 (1993).

    Article  ADS  CAS  Google Scholar 

  28. Rind, D. & Peteet, D. Terrestrial conditions at the last glacial maximum and CLIMAP sea-surface temperature estimates: Are they consistent? Quat. Res. 24, 1–22 (1985).

    Article  Google Scholar 

  29. Thompson, L. G. et al. Late glacial stage and holocene tropical ice core records from Huascarán, Peru. Science 269, 46–50 (1995).

    Article  ADS  CAS  Google Scholar 

  30. Benson, B. B. & Krause, D. Isotopic fractionation of helium during solution: A probe for the liquid state. J. Solut. Chem. 9, 895–909 ( 1980).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Holocher and H. Baur for help in the laboratory and for discussions, and M. Stute, R. Reuter, K. Walraevens, J. Lermytte and C. Weyhenmeyer for collaboration in the field studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Aeschbach-Hertig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aeschbach-Hertig, W., Peeters, F., Beyerle, U. et al. Palaeotemperature reconstruction from noble gases in ground water taking into account equilibration with entrapped air. Nature 405, 1040–1044 (2000). https://doi.org/10.1038/35016542

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35016542

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing