Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Deuterium in the Galactic Centre as a result of recent infall of low-metallicity gas

Abstract

The Galactic Centre is the most active and heavily processed region of the Milky Way, so it can be used as a stringent test for the abundance of deuterium (a sensitive indicator of conditions in the first 1,000 seconds in the life of the Universe). As deuterium is destroyed in stellar interiors, chemical evolution models1 predict that its Galactic Centre abundance relative to hydrogen is D/H = 5 × 10-12, unless there is a continuous source of deuterium from relatively primordial (low-metallicity) gas. Here we report the detection of deuterium (in the molecule DCN) in a molecular cloud only 10 parsecs from the Galactic Centre. Our data, when combined with a model of molecular abundances, indicate that D/H = (1.7 ± 0.3) × 10-6, five orders of magnitude larger than the predictions of evolutionary models with no continuous source of deuterium. The most probable explanation is recent infall of relatively unprocessed metal-poor gas into the Galactic Centre (at the rate inferred by Wakker2). Our measured D/H is nine times less than the local interstellar value, and the lowest D/H observed in the Galaxy. We conclude that the observed Galactic Centre deuterium is cosmological, with an abundance reduced by stellar processing and mixing, and that there is no significant Galactic source of deuterium.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The DCN spectra in the Sgr A 50 km s-1 cloud.
Figure 2: The DCN/HCN ratio calculated14,15 for D/H = 1.7 × 10-6 as a function of temperature.

Similar content being viewed by others

References

  1. Audouze, J., Lequeux, J., Reeves, H. & Vigroux, L. Implications of the presence of deuterium in the galactic centre. Astrophys. J. 208, L51–L54 ( 1976).

    Article  ADS  CAS  Google Scholar 

  2. Wakker, B. P. et al. Accretion of low-metallicity gas by the Milky Way. Nature 402, 388–390 ( 1999).

    Article  ADS  CAS  Google Scholar 

  3. Schramm, D. N. & Turner, M. S. Big-bang nucleosynthesis enters the precision era. Rev. Mod. Phys. 70, 303 –318 (1988).

    Article  ADS  Google Scholar 

  4. Yusef-Zadeh, F., Melia, F. & Wardle, M. The Galactic Center: an interacting system of unusual sources. Science 287, 85– 91 (2000).

    Article  ADS  CAS  Google Scholar 

  5. Morris, M. Massive star formation near the Galactic center and the fate of the stellar remnants. Astrophys. J. 408, 496– 506 (1993).

    Article  ADS  Google Scholar 

  6. Matteucci, F., Romano, D. & Molaro, P. Light and heavy elements in the galactic bulge. Astron. Astrophys. 341, 458–468 (1999).

    ADS  CAS  Google Scholar 

  7. Pasachoff, J. M. & Vidal-Madjar, A. The need to observe the distribution of interstellar deuterium. Comments Astrophys. 14, 61–68 ( 1989).

    ADS  Google Scholar 

  8. Poglitsch, A. et al. A survey of the 158 micron [C II] fine-structure line in the central 50 parsecs of the galaxy. Astrophys. J. 374 , L33–L36 (1991).

    Article  ADS  CAS  Google Scholar 

  9. Penzias, A. A. Interstellar HCN, HCO+, and the galactic deuterium gradient. Astrophys. J. 228, 430– 434 (1979).

    Article  ADS  CAS  Google Scholar 

  10. Serabyn, E., Lacy, J. H. & Actermann, J. M. The compression of the M-0.02-0.07 molecular cloud by the Sagittarius A East shell source. Astrophys. J. 395, 166–173 (1992).

    Article  ADS  CAS  Google Scholar 

  11. Hatchell, J., Millar, T. J. & Rodgers, S. D. The DCN/HCN abundance ratio in hot molecular cores. Astron. Astrophys. 332, 695– 702 (1998).

    ADS  CAS  Google Scholar 

  12. Minh, Y. C., Irvine, W. M. & Friberg, P. Molecular abundances in the Sagittarius A molecular cloud. Astron. Astrophys. 258, 489– 494 (1992).

    ADS  CAS  PubMed  Google Scholar 

  13. Güsten, R. & Ungerechts, H. Constraints on the sites of nitrogen nucleosynthesis from 15NH3-observations. Astron. Astrophys. 145, 241– 250 (1985).

    ADS  Google Scholar 

  14. Rodgers, S. D. & Millar, T. J. The chemistry of deuterium in hot molecular cores. Mon. Not. R. Astron. Soc. 280, 1046–1054 ( 1996).

    Article  ADS  CAS  Google Scholar 

  15. Millar, T. J., Roberts, H., Markwick, A. J. & Charnley, S. B. The role of H2D+ in the deuteration of interstellar molecules. Phil. Trans. R. Soc. Lond. A (in the press).

  16. Linsky, J. L. Deuterium abundance in the local ISM and possible spatial variations. Space Sci. Rev. 84, 285–296 (1998).

    Article  ADS  CAS  Google Scholar 

  17. Lubowich, D. A., Anantharamaiah, K. R. & Pasachoff, J. M. A search for localized sources of noncosmological deuterium near the Galactic center. Astrophys. J. 345 , 770–775 (1989).

    Article  ADS  CAS  Google Scholar 

  18. Jacq, T., Baudry, A., Walmsley, C. M. & Caselli, P. Deuterium in the Sagittarius B2 and Sagittarius A galactic center regions. Astron. Astrophys. 347, 957– 966 (1999).

    ADS  CAS  Google Scholar 

  19. Chengalur, J. N., Braun, R. & Butler, W. B. DI in the outer Galaxy. Astron. Astrophys. 318, L35–L38 ( 1997).

    ADS  Google Scholar 

  20. Prantzos, N. The evolution of D and 3He in the Galactic disk. Astron. Astrophys. 310, 106–114 (1996).

    ADS  CAS  Google Scholar 

  21. Ozernoi, L. & Chernomordik, V. V. The production of deuterium and helium-3 in the active galactic nucleus. Sov. Astron. 19, 693–698 (1975).

    ADS  Google Scholar 

  22. Boyd, R. N., Ferland, G. J. & Schramm, D. N. Photoerosion and the abundances of the light elements. Astrophys. J. 336, L1– L4 (1989).

    Article  ADS  CAS  Google Scholar 

  23. Mastichades, A. & Ozernoy, L. M. X-ray and gamma-ray emission of Sagittarius A* as a wind-accreting black hole. Astrophys. J. 426, 599–603 ( 1994).

    Article  ADS  Google Scholar 

  24. Mayer-Hasselwander, H. A. et al. High-energy gamma-ray emission from the Galactic Center. Astron. Astrophys. 335, 161–172 (1998).

    ADS  Google Scholar 

  25. Lubowich, D. A., Turner, B. E. & Hobbs, L. M. Constraints on galactic center activity: a search for enhanced galactic center lithium and boron. Astrophys. J. 508, 729–735 (1988).

    Article  ADS  Google Scholar 

  26. Copi, C. J., Schramm, D. N. & Turner, M. S. Assessing Big-Bang nucleosynthesis. Phys. Rev. Lett. 75, 3981–3984 (1995).

    Article  ADS  CAS  Google Scholar 

  27. Lovas, F. J. Recommended rest frequencies for observed interstellar molecular microwave transitions—1991 revision. J. Phys. Chem. Ref. Data 21, 181–272 (1992).

    Article  ADS  CAS  Google Scholar 

  28. Fukui, Y. et al. HCN emission in the Sagittarius A molecular cloud. Publ. Astron. Soc. Jpn 29, 643–667 (1977).

    ADS  CAS  Google Scholar 

  29. Genzel, R. et al. Far-infrared, submillimeter, and millimeter spectroscopy of the Galactic center—radio ARC and +20/+50 kilometer per second clouds. Astrophys. J. 356, 160– 173 (1990).

    Article  ADS  CAS  Google Scholar 

  30. Simpson, J. P., Colgan, S. W. J., Rubin, R. H., Erickson, E. F. & Haas, M. R. Far-infrared lines from H II regions: Abundance variations in the galaxy. Astrophys. J. 444, 721–738 ( 1995).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank H. Reeves and D. Tytler for comments, and A. Mancuso, S. Diaz, M. Pickard, R. Souza, K. Pagliuca and M. L. Kutner for their help. T.J.B. was a visiting scientist at the National Radio Astronomy Observatory, Tucson. The NRAO is a facility of the NSF operated under cooperative agreement by Associated Universities, Inc. We acknowledge a Research and Development Grant from Hofstra University, a Bronfman Science Center Grant from Williams College, and a PPARC grant at UMIST. J.M.P. and T.J.B. benefited from the Keck Northeast Astronomy Consortium.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Lubowich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lubowich, D., Pasachoff, J., Balonek, T. et al. Deuterium in the Galactic Centre as a result of recent infall of low-metallicity gas. Nature 405, 1025–1027 (2000). https://doi.org/10.1038/35016506

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35016506

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing