Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Regulation of distinct AMPA receptor phosphorylation sites during bidirectional synaptic plasticity

Abstract

Bidirectional changes in the efficacy of neuronal synaptic transmission, such as hippocampal long-term potentiation (LTP) and long-term depression (LTD), are thought to be mechanisms for information storage in the brain1,2,3,4. LTP and LTD may be mediated by the modulation of AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazloe proprionic acid) receptor phosphorylation5,6,7. Here we show that LTP and LTD reversibly modify the phosphorylation of the AMPA receptor GluR1 subunit. However, contrary to the hypothesis that LTP and LTD are the functional inverse of each other, we find that they are associated with phosphorylation and dephosphorylation, respectively, of distinct GluR1 phosphorylation sites. Moreover, the site modulated depends on the stimulation history of the synapse. LTD induction in naive synapses dephosphorylates the major cyclic-AMP-dependent protein kinase (PKA) site, whereas in potentiated synapses the major calcium/calmodulin-dependent protein kinase II (CaMKII) site is dephosphorylated. Conversely, LTP induction in naive synapses and depressed synapses increases phosphorylation of the CaMKII site and the PKA site, respectively. LTP is differentially sensitive to CaMKII and PKA inhibitors depending on the history of the synapse. These results indicate that AMPA receptor phosphorylation is critical for synaptic plasticity, and that identical stimulation conditions recruit different signal-transduction pathways depending on synaptic history.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Homosynaptic LTD in CA1 is associated with dephosphorylation of GluR1 at a PKA site.
Figure 2: LTP induction increases phosphorylation at CaMKII phosphorylation site on GluR1.
Figure 3: Depotentiation results in dephosphorylation of a CaMKII site on GluR1, whereas de-depression is associated with an increase in phosphorylation of a PKA site.
Figure 4: De-depression and LTP utilize different signal transduction pathways for their expression.
Figure 5: A model explaining the bidirectional changes in AMPA-receptor phosphorylation and NMDA-receptor-dependent synaptic plasticity.

References

  1. 1

    Bliss, T. V. P. & Collingridge, G. L. A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361, 31–39 ( 1993).

    ADS  CAS  Article  PubMed  Google Scholar 

  2. 2

    Bear, M. F. & Abraham, W. C. Long-term depression in hippocampus. Annu. Rev. Neurosci. 19, 437– 462 (1996).

    CAS  Article  PubMed  Google Scholar 

  3. 3

    Bear, M. F. A synaptic basis for memory storage in the cerebral cortex. Proc. Natl Acad. Sci. USA 93, 13453–13459 (1996).

    ADS  CAS  Article  PubMed  Google Scholar 

  4. 4

    Malenka, R. C. & Nicoll, R. A. Long-term potentiation—a decade of progress? Science 285, 1870– 1874 (1999).

    CAS  Article  PubMed  Google Scholar 

  5. 5

    Barria, A., Muller, D., Derkach, V., Griffith, L. C. & Soderling, T. R. Regulatory phosphorylation of AMPA-type glutamate receptors by CaM-KII during long-term potentiation. Science 276, 2042–2045 (1997).

    CAS  Article  PubMed  Google Scholar 

  6. 6

    Lee, H. -K., Kameyama, K., Huganir, R. L. & Bear, M. F. NMDA induces long-term synaptic depression and dephosphorylation of the GluR1 subunit of AMPA receptors in hippocampus. Neuron 21 , 1151–1162 (1998).

    CAS  Article  PubMed  Google Scholar 

  7. 7

    Kameyama, K., Lee, H. -K., Bear, M. F. & Huganir, R. L. Involvement of a postsynaptic protein kinase A substrate in the expression of homosynaptic long-term depression. Neuron 21, 1163– 1175 (1998).

    CAS  Article  PubMed  Google Scholar 

  8. 8

    Hollmann, M. & Heinemann, S. Cloned glutamate receptors. Annu. Rev. Neurosci. 17, 31–108 (1994).

    CAS  Article  PubMed  Google Scholar 

  9. 9

    Seeburg, P. H. The molecular biology of mammalian glutamate receptor channels. Trends Neurosci. 16, 359–365 (1993).

    CAS  Article  PubMed  Google Scholar 

  10. 10

    Squire, L. R. Memory and the hippocampus: A synthesis from findings with rats, monkeys, and humans. Psychol. Rev. 99, 195– 231 (1992).

    CAS  Article  Google Scholar 

  11. 11

    Zamanillo, D. et al. Importance of AMPA receptors for hippocampal synaptic plasticity but not for spatial learning. Science 284, 1805–1811 (1999).

    CAS  Article  Google Scholar 

  12. 12

    Roche, K. W., O'Brien, R. J., Mammen, A. L., Bernhardt, J. & Huganir, R. L. Characterization of multiple phosphorylation sites on the AMPA receptor GluR1 subunit. Neuron 16, 1179–1188 ( 1996).

    CAS  Article  PubMed  Google Scholar 

  13. 13

    Barria, A., Derkach, V. & Soderling, T. Identification of the Ca2+/calmodulin-dependent protein kinase II regulatory phosphorylation site in the α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate type glutamate receptor. J. Biol. Chem. 272, 32727–32730 (1997).

    CAS  Article  PubMed  Google Scholar 

  14. 14

    Mammen, A. L., Kameyame, K., Roche, K. W. & Huganir, R. L. Phosphorylation of the α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor GluR1 subunit by calcium/calmodulin-dependent kinase II. J. Biol. Chem. 272, 32528–32533 (1997).

    CAS  Article  PubMed  Google Scholar 

  15. 15

    Derkach, V., Barria, A. & Soderling, T. R. Ca2+/calmodulin-kinase II enhances channel conductance of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate type glutamate receptors. Proc. Natl Acad. Sci. USA 96, 3269–3274 (1999).

    ADS  CAS  Article  PubMed  Google Scholar 

  16. 16

    Banke, T. B. et al. Control of GLuR1 AMPA receptor function by cAMP-dependent protein kinase. J. Neurosci. 20, 89 –102 (2000).

    CAS  Article  PubMed  Google Scholar 

  17. 17

    Mulkey, R. M., Herron, C. E. & Malenka, R. C. An essential role for protein phosphatases in hippocampal long-term depression. Science 261, 1051– 1055 (1993).

    ADS  CAS  Article  PubMed  Google Scholar 

  18. 18

    Mulkey, R. M., Endo, S., Shenolikar, S. & Malenka, R. C. Involvement of a calcineurin/inhibitor-1 phosphatase cascade in hippocampal long-term depression. Nature 369, 486– 488 (1994).

    ADS  CAS  Article  PubMed  Google Scholar 

  19. 19

    Malenka, R. C. et al. Long-term potentiation: an essential role for postsynaptic calmodulin and protein kinase activity. Nature 340, 554–557 (1989).

    ADS  CAS  Article  PubMed  Google Scholar 

  20. 20

    Malinow, R., Schulman, H. & Tsien, R. W. Inhibition of postsynaptic PKC or CaMKII blocks induction but not expression of LTP. Science 245, 862–866 (1989).

    ADS  CAS  Article  PubMed  Google Scholar 

  21. 21

    Lledo, P.-M. et al. Calcium/calmodulin-dependent kinase II and long-term potentiation enhance synaptic transmission by the same mechanism. Proc. Natl Acad. Sci. USA 92, 11175–11179 (1995).

    ADS  CAS  Article  PubMed  Google Scholar 

  22. 22

    Otmakhov, N., Griffith, L. C. & Lisman, J. E. Postsynaptic inhibitors of calcium/calmodulin-dependent protein kinase type II block induction but not maintenance of pairing-induced long-term potentiation. J. Neurosci. 17, 5357–5365 (1997).

    CAS  Article  PubMed  Google Scholar 

  23. 23

    Abeliovich, A. et al. Modified hippocampal long-term potentiation in PKC gamma-mutant mice. Cell 75, 1253–1262 (1993).

    CAS  Article  PubMed  Google Scholar 

  24. 24

    Benke, T. A., Luthi, A., Isaac, J. T. & Collingridge, G. L. Modulation of AMPA receptor unitary conductance by synaptic activity. Nature 393, 793–797 ( 1998).

    ADS  CAS  Article  Google Scholar 

  25. 25

    Carroll, R. C., Lissing, D. V., von Zastrow, M., Nicoll, R. A. & Malenka, R. C. Rapid redistribution of glutamate receptors contributes to long-term depression in hippocampal cultures. Nature Neurosci. 2, 454–460 (1999).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. 26

    Shi, S. H. et al. Rapid spine delivery and redistribution of AMPA receptors after synaptic NMDA receptor activation. Science 284 , 1811–1816 (1999).

    CAS  Article  PubMed  Google Scholar 

  27. 27

    Dudek, S. M. & Bear, M. F. Homosynaptic long-term depression in area CA1 of hippocampus and the effects of NMDA receptor blockade. Proc. Natl Acad. Sci. USA 89, 4363– 4367 (1992).

    ADS  CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank C. Doherty for help in preparing the antibodies and D. Bury for help with the manuscript. This work was supported by the Howard Hughes Medical Institute, NARSAD and The Grable Foundation.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Richard L. Huganir.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lee, HK., Barbarosie, M., Kameyama, K. et al. Regulation of distinct AMPA receptor phosphorylation sites during bidirectional synaptic plasticity. Nature 405, 955–959 (2000). https://doi.org/10.1038/35016089

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing