Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A pug-nosed crocodyliform from the Late Cretaceous of Madagascar

Abstract

Although the image of crocodyliforms as ‘unchanged living fossils’ is naive, several morphological features of the group are thought to have varied only within narrow limits during the course of evolution1. These include an elongate snout with an array of conical teeth, a dorsoventrally flattened skull and a posteriorly positioned jaw articulation, which provides a powerful bite force. Here we report an exquisitely preserved specimen of a new taxon from the Late Cretaceous of Madagascar that deviates profoundly from this Bauplan, possessing an extremely blunt snout, a tall, rounded skull, an anteriorly shifted jaw joint and clove-shaped, multicusped teeth reminiscent of those of some ornithischian dinosaurs. This last feature implies that the diet of the new taxon may have been predominantly if not exclusively herbivorous. A close relationship with notosuchid crocodyliforms, particularly Uruguaysuchus (Late Cretaceous, Uruguay)2 is suggested by several shared derived features; this supports a biogeographical hypothesis that Madagascar and South America were linked during the Late Cretaceous3 .

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Simosuchus clarki, UA 8679 (holotype), from the Upper Cretaceous Maevarano Formation of Madagascar.
Figure 2: Cladogram showing phylogenetic position of Simosuchus clarki based on strict consensus of the six most parsimonious trees (length, 262; Consistency Index (excluding autapomorphies) 0.460; Retention Index, 0.642) generated using PAUP* (version 4.0b2a)27.

References

  1. Langston, W. in Biology of the Reptilia Vol. 4 (eds Gans, C. & Parsons, T. S.) 263–284 (Academic, New York, 1973).

    Google Scholar 

  2. Rusconi, C. Sobre reptiles cretáceos del Uruguay (Uruguaysuchus Aznarezi, n. g. n. sp.) y sus relaciones con los notossúquidos de Patagonia. Bol. Inst. Geolog. Perf. Uruguay 19, 3– 64 (1932).

    Google Scholar 

  3. Krause, D. W. et al. The Late Cretaceous vertebrate fauna of Madagascar: implications for Gondwanan paleobiogeography. GSA Today 9, 1–7 (1999).

    Google Scholar 

  4. Brochu, C. A. Closure of neurocentral sutures during crocodilian ontogeny: implications for maturity assessment in fossil archosaurs. J. Vertebr. Paleontol. 16, 49–62 ( 1996).

    Article  Google Scholar 

  5. Pol, D. Basal mesoeucrocodylian relationships: new clues to old conflicts. J. Vertebr. Paleontol. 19 (suppl. 3), 69A ( 1999).

    Google Scholar 

  6. Bonaparte, J. F. Los vertebrados fosiles de la Formacion Rio Colorado, de la ciudad de Neuquen y Cercanias, Cretacico Superior, Argentina. Rev. Mus. Argent. Cienc. Nat. 4, 16–123 ( 1991).

    Google Scholar 

  7. Clark, J. M., Jacobs, L. L. & Downs, W. R. Mammal-like dentition in a Mesozoic crocodylian. Science 244, 1064–1066 (1989).

    Article  ADS  CAS  Google Scholar 

  8. Gomani, E. M. A crocodyliform from the Early Cretaceous dinosaur beds, northern Malawi. J. Vertebr. Paleontol. 17, 280– 294 (1997).

    Article  Google Scholar 

  9. Medem, F. Osteología craneal, distribución geográfica y ecología de Melanosuchus niger (Spix) (Crocodylia, Alligatoridae). Rev. Acad. Colomb. Cienc. Exact. Fís. y Nat. 12, 5–19 (1963).

    Google Scholar 

  10. Balouet, J. C. & Buffetaut, E. Mekosuchus inexpectatus, n.g., n.sp., crocodilien nouveau de l’Holocene de Nouvelle Calédonie. C. R. Acad. Sci. 304, 853–856 (1987).

    Google Scholar 

  11. Willis, P. M. A. New crocodilians from the Late Oligocene White Hunter Site, Riversleigh, northwestern Queensland. Mem. Qld. Mus. 41, 423–438 (1997).

    Google Scholar 

  12. Carvalho, I. S. & Campos, D. A. Um mamífero triconodonte do Cretáceo Inferior do Maranhào, Brasil. An. Acad. Bras. Cienc. 60, 437–446 (1988).

    Google Scholar 

  13. Carvalho, I. S. Candidodon: um crocodilo com heterodontia (Notosuchia, Cretáceo Inferior – Brasil). An. Acad. Bras. Cienc. 66 , 331–345 (1994).

    Google Scholar 

  14. Wu, X. -C., Sues, H. -D. & Sun, A. A plant-eating crocodyliform reptile from the Cretaceous of China. Nature 376, 678– 680 (1995).

    Article  ADS  CAS  Google Scholar 

  15. Benton, M. J. & Clark, J. M. in The Phylogeny and Classification of the Tetrapods Vol. 1 (ed. Benton, M. J.) 295– 338 (Clarendon, Oxford, 1988).

    Google Scholar 

  16. Krause, D. W., Prasad, G. V. R., Koenigswald, W. von, Sahni, A. & Grine, F. E. Cosmopolitanism among Gondwanan Late Cretaceous mammals. Nature 390, 504 –507 (1997).

    Article  ADS  CAS  Google Scholar 

  17. Sampson, S. D. et al. Predatory dinosaur remains from Madagascar: implications for the Cretaceous biogeography of Gondwana. Science 280 , 1048–1051 (1998).

    Article  ADS  CAS  Google Scholar 

  18. Buckley, G. A., Brochu, C. A. & Krause, D. W. Hyperdiversity and the paleobiogeographic origins of the Late Cretaceous crocodyliforms of Madagascar. J. Vertebr. Paleontol. 17 (suppl. 3), 35A ( 1997).

    Google Scholar 

  19. Iordansky, N. N. in Biology of the Reptilia Vol. 4 (eds Gans, C. & Parsons, T. S.) 201-262 (Academic, New York, 1973 ).

    Google Scholar 

  20. Gans, C. Biomechanics: An Approach to Vertebrate Biology (J. B. Lippincott, Philadelphia, 1974).

    Google Scholar 

  21. Wake, M. H. in The Skull Vol. 3 (eds Hanken, J. & Hall, B. K.) 197–240 (University of Chicago, Chicago, 1993).

    Google Scholar 

  22. Schumacher, G.-H. in Biology of the Reptilia Vol. 4 (eds Gans, C. & Parsons, T. S.) 101–199 (Academic, New York, 1973).

    Google Scholar 

  23. Hotton, N. III A survey of adaptive relationships of dentition to diet in the North American Iguanidae. Am. Midl. Nat. 53, 88– 114 (1955).

    Article  Google Scholar 

  24. Sues, H.-D. & Reisz, R. R. Origins and early evolution of herbivory in tetrapods. Trends Ecol. Evol. 13, 141–145 (1998).

    Article  CAS  Google Scholar 

  25. Galton, P. M. in The Dinosauria (eds Weishampel, D. B., Dodson, P. & Osmólska, H.) 456–483 (Univ. California, Berkeley, 1990).

    Google Scholar 

  26. Coombs, W. P. & Maryanska, T. in The Dinosauria (eds Weishampel, D. B., Dodson, P. & Osmólska, H.) 456–483 (Univ. California, Berkeley, 1990).

    Google Scholar 

  27. Swofford, D. L. PAUP*: Phylogenetic Analysis Using Parsimony (*and Other Methods), Version 4.0b2a. (Sinauer Associates, Sunderland, Massachusetts, 1999 ).

    Google Scholar 

Download references

Acknowledgements

We thank B. Rakotosamimanana, A. Rasoamiaramanana, P. Wright, B. Andriamihaja, the staff of the Institute for the Conservation of Tropical Environments, the villagers of Berivotra, and all expedition members for assistance with field work; V. Heisey and J. Holstein for assistance with specimen preparation; B. Demes, C. Forster, N. Rybczynski and S. Zehr for discussion; and the NSF for funding.

Author information

Authors and Affiliations

Authors

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buckley, G., Brochu, C., Krause, D. et al. A pug-nosed crocodyliform from the Late Cretaceous of Madagascar. Nature 405, 941–944 (2000). https://doi.org/10.1038/35016061

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35016061

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing