Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mapping the Hawaiian plume conduit with converted seismic waves

Abstract

The volcanic edifice of the Hawaiian islands and seamounts, as well as the surrounding area of shallow sea floor known as the Hawaiian swell, are believed to result from the passage of the oceanic lithosphere over a mantle hotspot1,2,3. Although geochemical and gravity observations indicate the existence of a mantle thermal plume beneath Hawaii4,5,6, no direct seismic evidence for such a plume in the upper mantle has yet been found. Here we present an analysis of compressional-to-shear (P-to-S) converted seismic phases, recorded on seismograph stations on the Hawaiian islands, that indicate a zone of very low shear-wave velocity (< 4 km s-1) starting at 130–140 km depth beneath the central part of the island of Hawaii and extending deeper into the upper mantle. We also find that the upper-mantle transition zone (410–660 km depth) appears to be thinned by up to 40–50 km to the south-southwest of the island of Hawaii. We interpret these observations as localized effects of the Hawaiian plume conduit in the asthenosphere and mantle transition zone with excess temperature of 300 °C. Large variations in the transition-zone thickness suggest a lower-mantle origin of the Hawaiian plume similar to the Iceland plume7, but our results indicate a 100 °C higher temperature for the Hawaiian plume.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Map of study area.
Figure 2: Teleseismic receiver functions (RFs) recorded at KIP and HIBSN.
Figure 3: Comparison of observed (summation traces) and synthetic RFs of the uppermost mantle below Oahu (KIP) and Hawaii (HIBSN).
Figure 4: Relation between the depth of the top of the low-velocity zone (LVZ) and plume temperature.

Similar content being viewed by others

References

  1. Wilson, J. T. A possible origin of the Hawaiian Islands. Can. J. Phys. 41, 863–870 (1963).

    Article  ADS  Google Scholar 

  2. Morgan, W. J. Convection plumes in the lower mantle. Nature 230, 42–43 (1971).

    Article  ADS  Google Scholar 

  3. Morgan, J. P., Morgan, W. J. & Price, E. Hotspot melting generates both hotspot volcanism and hotspot swell? J. Geophys. Res. 100, 8045 –8062 (1995).

    Article  ADS  Google Scholar 

  4. Hofmann, A. W. Mantle geochemistry: the message from oceanic volcanism. Nature 385, 219–229 ( 1997).

    Article  ADS  CAS  Google Scholar 

  5. Watson, S. & McKenzie, D. Melt generation by plumes: A study of Hawaiian volcanism. J. Petrol. 32, 501 –537 (1991).

    Article  ADS  CAS  Google Scholar 

  6. Ribe, N. M. & Christensen, U. Three-dimensional modelling of plume-lithosphere interaction. J. Geophys. Res. 99, 669–682 (1994).

    Article  ADS  Google Scholar 

  7. Shen, Y., Solomon, S. C., Bjarnason, I. Th. & Wolfe, C. J. Seismic evidence for a lower-mantle origin of the Iceland plume. Nature 395, 62–65 ( 1998).

    Article  ADS  CAS  Google Scholar 

  8. Russel, S. A., Lay, T. & Garnero, E. J. Seismic evidence for small-scale dynamics in the lowermost mantle at the root of the Hawaiian hotspot. Nature 396, 255–258 (1998).

    Article  ADS  CAS  Google Scholar 

  9. Ji, Y. & Nataf, H.-C. Detection of mantle plumes in the lower mantle by diffraction tomography: Hawaii. Earth Planet. Sci. Lett. 159, 99–115 ( 1998).

    Article  ADS  CAS  Google Scholar 

  10. Bock, G. Long-period S to P converted waves and the onset of partial melting beneath Oahu. Geophys. Res. Lett. 18, 869– 872 (1991).

    Article  ADS  Google Scholar 

  11. Woods, M. T., Leveque, J. -J., Okal, E. A. & Cara, M. Two-station measurements of Rayleigh wave group velocity along the Hawaiian Swell. Geophys. Res. Lett. 18, 105– 108 (1991).

    Article  ADS  Google Scholar 

  12. Priestley, K. & Tilmann, F. Shear-wave structure of the lithosphere above the Hawaiian hot spot from two-station Rayleigh wave phase velocity measurements. Geophys. Res. Lett. 26, 1493 –1496 (1999).

    Article  ADS  Google Scholar 

  13. Nishimura, C. & Forsyth, D. Rayleigh wave phase velocities in the Pacific with implications for azimuthal anisotropy and lateral heterogeneities. Geophys. J. Int. 94, 479– 501 (1988).

    Article  ADS  Google Scholar 

  14. Yuan, X., Ni, J., Kind, R., Mechie, J. & Sandvol, E. Lithospheric and upper mantle structure of southern Tibet from a seismological passive source experiment. J. Geophys. Res. 102, 27491–27500 ( 1997).

    Article  ADS  Google Scholar 

  15. Kosarev, G. et al. Seismic evidence for a detached Indian lithospheric mantle beneath Tibet. Science 283, 1306– 1309 (1999).

    Article  ADS  CAS  Google Scholar 

  16. Bina, C. R. & Helffrich, G. Phase transition Clapeyron slopes and transition zone seismic discontinuity topography. J. Geophys. Res. 99, 15853–15860 ( 1994).

    Article  ADS  CAS  Google Scholar 

  17. Sobolev, S. V. et al. Upper mantle temperatures from teleseismic tomography of French Massif Central including effects of composition, mineral reactions, anharmonicity, anelasticity and partial melt. Earth Planet. Sci. Lett. 139, 147–163 (1996).

    Article  ADS  CAS  Google Scholar 

  18. Karato, S. & Jung, H. Water, partial melting and the origin of the seismic low velocity and high attenuation zone in the upper mantle. Earth Planet. Sci. Lett. 157, 193– 207 (1998).

    Article  ADS  CAS  Google Scholar 

  19. Sobolev, A. V. & Nikogosian, I. K. Petrology of long-lived mantle plume magmatism: Hawaii, Pacific and Reunion Island, Indian Ocean. Petrology 2, 111– 144 (1994).

    Google Scholar 

  20. Hirth, G. & Kohlstedt, D. L. Water in the oceanic upper mantle: implications for rheology, melt extraction and the evolution of the lithosphere. Earth Planet. Sci. Lett. 144, 93–108 (1996).

    Article  ADS  CAS  Google Scholar 

  21. Gaherty, J. B., Jordan, T. H. & Gee, L. S. Seismic structure of the upper mantle in a central Pacific corridor. J. Geophys. Res. 101, 22291–22309 (1996).

    Article  ADS  Google Scholar 

  22. McKenzie, D. & Bickle, M. J. The volume and composition of melt generated by extension of the lithosphere. J. Petrol. 29, 625–679 (1988).

    Article  ADS  CAS  Google Scholar 

  23. Hauri, E. H., Lassiter, J. C. & DePaolo, D. J. Osmium isotope systematics of drilled lavas from Mauna Loa, Hawaii. J. Geophys. Res. 101, 11793–11806 (1996).

    Article  ADS  Google Scholar 

  24. Hilton, D. R., McMurtry, G. M. & Goff, F. Large variations in vent fluid CO2/3He ratios signal rapid changes in magma chemistry at Loihi seamount, Hawaii. Nature 396, 359– 362 (1998).

    Article  ADS  CAS  Google Scholar 

  25. Ekstrom, G. & Dziewonski, A. M. The unique anisotropy of the Pacific upper mantle. Nature 394, 168– 172 (1998).

    Article  ADS  CAS  Google Scholar 

  26. Nataf, H. -C. & VanDecar, J. Seismological detection of a mantle plume? Nature 364, 115– 120 (1993).

    Article  ADS  Google Scholar 

  27. Ribe, N. M. & Christensen, U. R. The dynamical origin of Hawaiian volcanism. Earth Planet. Sci. Lett. 171, 517–531 (1999).

    Article  ADS  CAS  Google Scholar 

  28. Ito, G., Shen, Y., Hirth, G & Wolfe, C. J. Mantle flow, melting, and dehydration of the Iceland mantle plume. Earth Planet. Sci. Lett. 165, 81–96 ( 1999).

    Article  ADS  CAS  Google Scholar 

  29. Vinnik, L., Chevrot, S. & Montagner, J. P. Evidence for a stagnant plume in the transition zone? Geophys. Res. Lett. 33, 149– 163 (1997).

    Google Scholar 

  30. Kennett, B. L. N. Seismological Tables (Research School of Earth Sciences, Australian National University, Canberra, 1991).

    Google Scholar 

Download references

Acknowledgements

We thank IRIS/GEOSCOPE for making the KIP data available to us, P. Dawson and B. Chouet for retrieving the seismic data from the broadband stations on the island of Hawaii, H. Kämpf for discussions, and G. Helffrich for comments on the manuscript. This work was supported by the Deutsche Forschungsgemeinschaft within the International Continental Drilling Project (ICDP) and the GeoForschungsZentrum Potsdam.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Kind.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, X., Kind, R., Priestley, K. et al. Mapping the Hawaiian plume conduit with converted seismic waves. Nature 405, 938–941 (2000). https://doi.org/10.1038/35016054

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35016054

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing