Tyrosine phosphorylation and tyrosine kinase activity of the trk proto-oncogene product induced by NGF

Article metrics

Abstract

NERVE growth factor (NGF) is a neurotrophic factor responsible for the differentiation and survival of sympathetic and sensory neurons as well as selective populations of cholinergic neurons1,2. NGF binds to specific cell-surface receptors but the mechanism for transduction of the neurotrophic signal is unknown. Several experiments using the NGF-responsive pheochromocytoma cell line, PC12, have implicated tyrosine phosphorylation in NGF-mediated responses, although no NGF-specific tyrosine kinases have been identified3. Here we show that NGF induces tyrosine phosphorylation and tyrosine kinase activity of the trk protooncogene product, a tyrosine kinase receptor whose expression is restricted in vivo to neurons of the sensory spinal and cranial ganglia of neural crest origin4. Tyrosine phosphorylation of trk by NGF is rapid, specific and occurs with picomolar quantities of factor, indicating that the response is mediated by physiological amounts of NGF. Activation of the trk tyrosine kinase receptor provides a possible mechanism for signal transduction by NGF.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Levi-Montalcini, R. Science 237, 1154–1161 (1987).

  2. 2

    Gnahn, H., Heft, F., Heumann, R., Schwab, M. E. & Thoenen, H. Devl Brain Res. 9, 45–52 (1983).

  3. 3

    Maher, P. A. Proc. natn. Acad. Sci. U.S.A. 85, 6788–6791 (1988).

  4. 4

    Martin-Zanca, D., Barbacid, M. & Parada, L. F. Genes Dev. 4, 683–694 (1990).

  5. 5

    Greene, L. A. & Tischler, A. S. Proc. natn. Acad. Sci. U.S.A. 73, 2424–2428 (1976).

  6. 6

    Schubert, D., Heinemann, S. & Kidokoro, Y. Proc. natn. Acad. Sci. U.S.A. 74, 2579–2583 (1977).

  7. 7

    Dichter, M. A., Tischler, A. S. & Greene, L. A. Nature 268, 501–504 (1977).

  8. 8

    Alema, S., Casalbore, P., Agostini, E. & Tato, F. Nature 316, 557–559 (1985).

  9. 9

    Klein, R., Martin-Zanca, D., Barbacid, M. & Parada, L. F. Development 4, 845–850 (1990).

  10. 10

    Klein, R., Parada, L. F., Coulier, F. & Barbacid, M. EMBO J. 8, 3701–3709 (1989).

  11. 11

    Martin-Zanca, D., Oskam, R., Mitra, G., Copeland, T. & Barbacid, M. Molec. cell. Biol. 9, 24–33 (1988).

  12. 12

    Maher, P. A. J. Neurosci. Res. 24, 29–37 (1989).

  13. 13

    Greenberg, M. E., Hermanowski, A. L. & Ziff, E. B. Molec. cell. Biol. 6, 1050–1057 (1986).

  14. 14

    Greene, L. A. & Rein, G. Nature 268, 349–351 (1977).

  15. 15

    Kim, U.-H. et al. J. biol. Chem. (in the press).

  16. 16

    Thoenen, H. & Barde, Y. A. Physiol. Rev. 60, 1284–1335 (1980).

  17. 17

    Morrison, D. K., Browning, P. J., White, M. F. & Roberts, T. M. Molec cell. Biol. 8, 176–185 (1988).

  18. 18

    Kaplan, D. R., Morrison, D. K., Wong, G., McCormick, F. & Williams, L. T. Cell 61, 125–133 (1990).

  19. 19

    Morrison, D. K. et al. Cell 58, 649–657 (1989).

  20. 20

    Chao, M. V. in Handbook of Experimental Pharmacology Vol. 95/II (eds Sporn, M. B. & Roberts, A. B.) 135–165 (Springer-Verlag, 1990).

  21. 21

    Sefton, B. M., Hunter, T., Ball, E. H. & Singer, S. J. Cell 24, 165–174 (1981).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.