The lyase activity of the DNA repair protein β-polymerase protects from DNA-damage-induced cytotoxicity

Abstract

Small DNA lesions such as oxidized or alkylated bases are repaired by the base excision repair (BER) pathway1. BER includes removal of the damaged base by a lesion-specific DNA glycosylase, strand scission by apurinic/apyrimidinic endonuclease, DNA resynthesis and ligation2. BER may be further subdivided into DNA β-polymerase (β-pol)-dependent single-nucleotide repair and β-pol-dependent or -independent long patch repair subpathways3,4,5,6. Two important enzymatic steps in mammalian single-nucleotide BER are contributed by β-pol: DNA resynthesis of the repair patch and lyase removal of 5′-deoxyribose phosphate (dRP)2. Fibroblasts from β-pol null mice are hypersensitive to monofunctional DNA-methylating agents, resulting in increases in chromosomal damage, apoptosis and necrotic cell death3,7. Here we show that only the dRP lyase activity of β-pol is required to reverse methylating agent hypersensitivity in β-pol null cells. These results indicate that removal of the dRP group is a pivotal step in BER in vivo. Persistence of the dRP moiety in DNA results in the hypersensitivity phenotype of β-pol null cells and may signal downstream events such as apoptosis and necrotic cell death.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Sensitivity of fibroblast cell lines to MMS.
Figure 2: DNA synthesis activity of β-pol is not required to reverse the MMS hypersensitivity of β-pol null cells.
Figure 3: RP lyase activity of β-pol is sufficient to reverse the MMS hypersensitivity of β-pol null cells.
Figure 4: RP lyase activity in whole-cell extracts from stably transfected β-pol null cell lines.

References

  1. 1

    Lindahl, T. & Wood, R. D. Quality control by DNA repair. Science 286, 1897–1905 ( 1999).

  2. 2

    Wilson, S. H. Mammalian base excision repair and DNA polymerase β. Mutat. Res. 407, 203–215 ( 1998).

  3. 3

    Sobol, R. W. et al. Requirement of mammalian DNA polymerase β in base-excision repair. Nature 379, 183– 186 (1996).

  4. 4

    Biade, S., Sobol, R. W., Wilson, S. H. & Matsumoto, Y. Impairment of proliferating cell nuclear antigen-dependent apurinic/apyrimidinic site repair on linear DNA. J. Biol. Chem. 273, 898–902 (1998).

  5. 5

    Fortini, P. et al. Different DNA polymerases are involved in the short- and long-patch base excision repair in mammalian cells. Biochemistry 37, 3575–3580 (1998).

  6. 6

    Horton, J. K., Prasad, R., Hou, E. & Wilson, S. H. Protection against methylation-induced cytotoxicity by DNA polymerase β-dependent long patch base excision repair. J. Biol. Chem. 275, 2211–2218 (2000).

  7. 7

    Ochs, K., Sobol, R. W., Wilson, S. H. & Kaina, B. Cells deficient in DNA polymerase β are hypersensitive to alkylating agent-induced apoptosis and chromosomal breakage. Cancer Res. 59, 1544–1551 (1999).

  8. 8

    Beard, W. A. et al. Enzyme–DNA interactions requried for efficient nucleotide incorporation and discrimination in human DNA polymerase β. J. Biol. Chem. 271, 12141–12144 (1996).

  9. 9

    Ahn, J., Werneburg, B. G. & Tsai, M. D. DNA polymerase β: structure-fidelity relationship from pre-steady-state kinetic analyses of all possible correct and incorrect base pairs for wild type and R283A mutant. Biochemistry 36, 1100–1107 (1997).

  10. 10

    Beard, W. A. & Wilson, S. H. Structural insights into DNA polymerase β fidelity: hold tight if you want it right. Chem. Biol. 5, 7–13 (1998).

  11. 11

    Pelletier, H., Sawaya, M. R., Kumar, A., Wilson, S. H. & Kraut, J. Structures of ternary complexes of rat DNA polymerase β, a DNA template-primer, and ddCTP. Science 264, 1891–1903 (1994).

  12. 12

    Menge, K. L. et al. Structure–function analysis of the mammalian DNA polymerase β active site: role of aspartic acid 256, arginine 254, and arginine 258 in nucleotidyl transfer. Biochemistry 34, 15934 –15942 (1995).

  13. 13

    Kesti, T., Flick, K., Keranen, S., Syvaoja, J. E. & Wittenberg, C. DNA polymerase ε catalytic domains are dispensable for DNA replication, DNA repair, and cell viability. Mol. Cell 3, 679–685 ( 1999).

  14. 14

    Dua, R., Levy, D. L. & Campbell, J. L. Analysis of the essential functions of the C-terminal protein/protein interaction domain of Saccharomyces cerevisiae pol ε and its unexpected ability to support growth in the absence of the DNA polymerase domain. J. Biol. Chem. 274, 22283– 22288 (1999).

  15. 15

    Prasad, R. et al. Functional analysis of the amino-terminal 8-kDa domain of DNA polymerase β as revealed by site-directed mutagenesis. DNA binding and 5′-deoxyribose phosphate lyse activities. J. Biol. Chem. 273, 11121–11126 ( 1998).

  16. 16

    Prasad, R., Beard, W. A., Strauss, P. R. & Wilson, S. H. Human DNA polymerase β deoxyribose phosphate lyase. Substrate specificity and catalytic mechanism. J. Biol. Chem. 273, 15263–15270 (1998).

  17. 17

    Matsumoto, Y., Kim, K., Katz, D. S. & Feng, J. A. Catalytic center of DNA polymerase β for excision of deoxyribose phosphate groups. Biochemistry 37, 6456–6464 (1998).

  18. 18

    Prasad, R., Dianov, G. L., Bohr, V. A. & Wilson, S. H. FEN1 stimulation of DNA polymerase β mediates an excision step in mammalian long patch base excision repair. J. Biol. Chem. 275 , 4460–4466 (2000).

  19. 19

    Price, A. & Lindahl, T. Enzymatic release of 5′-terminal deoxyribose phosphate residues from damaged DNA in human cells. Biochemistry 30, 8631–8637 (1991).

  20. 20

    Longley, M. J., Prasad, R., Srivastava, D. K., Wilson, S. H. & Copeland, W. C. Identification of 5′-deoxyribose phosphate lyase activity in human DNA polymerase γ and its role in mitochondrial base excision repair in vitro. Proc. Natl Acad. Sci. USA 95, 12244–12248 (1998).

  21. 21

    Sandigursky, M. & Franklin, W. A. Escherichia coli single-stranded DNA binding protein stimulates the DNA deoxyribophosphodiesterase activity of exonuclease I. Nucleic Acids Res. 22, 247–250 (1994).

  22. 22

    Sandigursky, M. et al. The yeast 8-oxoguanine DNA glycosylase (Ogg1) contains a DNA deoxyribophosphodiesterase (dRpase) activity. Nucleic Acids Res. 25, 4557–4561 ( 1997).

  23. 23

    Sandigursky, M., Yacoub, A., Kelley, M. R., Deutsch, W. A. & Franklin, W. A. The Drosophila ribosomal protein S3 contains a DNA deoxyribophosphodiesterase (dRpase) activity. J. Biol. Chem. 272, 17480–17484 (1997).

  24. 24

    Dianov, G. et al. Release of 5′-terminal deoxyribose-phosphate residues from incised abasic sites in DNA by the Escherichia coli RecJ protein. Nucleic Acids Res. 22, 993– 998 (1994).

  25. 25

    Graves, R. J. Felzenszwalb, I., Laval, J. & O'Connor, T. R. Excision of 5′-terminal deoxyribose phosphate from damaged DNA is catalyzed by the Fpg protein of Escherichia coli. J. Biol. Chem. 267, 14429–14435 (1992).

  26. 26

    Srivastava, D. K. et al. Mammalian abasic site base excision repair. Identification of the reaction sequence and rate-determining steps. J. Biol. Chem. 273, 21203–21209 ( 1998).

  27. 27

    Dycaico, M. J. et al. The use of shuttle vectors for mutation analysis in transgenic mice and rats. Mutat. Res. 307, 461– 478 (1994).

Download references

Acknowledgements

We thank W. A. Beard and K. R. Tindall for critical reading of the manuscript.

Author information

Correspondence to Samuel H. Wilson.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sobol, R., Prasad, R., Evenski, A. et al. The lyase activity of the DNA repair protein β-polymerase protects from DNA-damage-induced cytotoxicity. Nature 405, 807–810 (2000) doi:10.1038/35015598

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.