Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Reversible electromechanical characteristics of carbon nanotubes underlocal-probe manipulation

Abstract

The effects of mechanical deformation on the electrical properties of carbonnanotubes are of interest given the practical potential of nanotubes in electromechanicaldevices, and they have been studied using both theoretical1,2,3,4and experimental5,6 approaches. One recent experiment6 used the tip of an atomic force microscope (AFM) to manipulate multi-wallednanotubes, revealing that changes in the sample resistance were small unlessthe nanotubes fractured or the metal–tube contacts were perturbed. Butit remains unclear how mechanical deformation affects the intrinsic electricalproperties of nanotubes. Here we report an experimental and theoretical elucidationof the electromechanical characteristics of individual single-walled carbonnanotubes (SWNTs) under local-probe manipulation. We use AFM tips to deflectsuspended SWNTs reversibly, without changing the contact resistance; insitu electrical measurements reveal that the conductance of an SWNT samplecan be reduced by two orders of magnitude when deformed by an AFM tip. Ourtight-binding simulations indicate that this effect is owing to the formationof local sp3 bonds caused by the mechanical pushingaction of the tip.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: An SWNT partly suspended over a trench for electromechanical measurements.
Figure 2: Cantilever deflection ΔZc versus vertical coordinate Z during a cycle of pushing a suspended nanotube and then retracting.
Figure 3: Cantilever deflection and nanotube electrical conductance evolutionduring repeated cycles of pushing the suspended SWNT.
Figure 4: Electrical conductance versus mechanical deformation for a manipulatedSWNT.

Similar content being viewed by others

References

  1. Crespi, V., Cohen, M. & Rubio, A. In situ band gap engineering of carbon nanotubes. Phys. Rev. Lett. 79, 2093–2096 (1997).

    Article  ADS  CAS  Google Scholar 

  2. Kane, C. L. & Mele, E. J. Size, shape, and low energy electronicstructure of carbon nanotubes. Phys. Rev. Lett. 78, 1932–1935 (1997).

    Article  ADS  CAS  Google Scholar 

  3. Nardelli, M. & Bernholc, J. Mechanical deformations and coherenttransport in carbon nanotubes. Phys. Rev. B, 60, R16338–16341 (1998).

    Article  ADS  Google Scholar 

  4. Rochefort, A., Salahub, D. & Avouris, P. The effect of structural distortions on the electronicstructure of carbon nanotubes. Chem. Phys. Lett. 297, 45–50 (1998).

    Article  ADS  CAS  Google Scholar 

  5. Bezryadin, A., Verschueren, A., Tans, S. & Dekker, C. Multiprobe transport experiments on individual single-wall carbon nanotubes. Phys. Rev. Lett. 80, 4036–4039 (1998).

    Article  ADS  CAS  Google Scholar 

  6. Paulson, S. et al. In situ resistance measurements of strained carbonnanotubes. Appl. Phys. Lett. 75, 2936–2938 (1999).

    Article  ADS  CAS  Google Scholar 

  7. Kong, J., Soh, H., Cassell, A., Quate, C. F. & Dai, H. Synthesis of individual single-walled carbon nanotubeson patterned silicon wafers. Nature 395, 878–881 (1998).

    Article  ADS  CAS  Google Scholar 

  8. Soh, H. et al. Integrated nanotube circuits: controlled growth and ohmic contactingof single-walled carbon nanotubes. Appl. Phys. Lett. 75, 627–629 (1999).

    Article  ADS  CAS  Google Scholar 

  9. Kong, J. et al. Synthesis, integration and electrical properties of individual single-walledcarbon nanotubes. Appl. Phys. A 69, 305–308 (1999).

    Article  ADS  CAS  Google Scholar 

  10. Salvetat, J. P. et al. Elastic and shear moduli of single-walled carbon nanotuberopes. Phys. Rev. Lett. 82, 944–947 (1999).

    Article  ADS  CAS  Google Scholar 

  11. Timoshenko, S. Strength of Materials. Part I, Elementary Theory and Problems (Van Nostrand,New York, 1930).

    MATH  Google Scholar 

  12. Walters, D. et al. Elastic strain of freely suspended single-walled carbon nanotuberopes. Appl. Phys. Lett. 74, 3803–3805 (1999).

    Article  ADS  CAS  Google Scholar 

  13. Hertel, T., Martel, R. & Avouris, P. Manipulation of individual carbon nanotubes and theirinteraction with surfaces. J. Phys. Chem. 102, 910–915 (1998).

    Article  CAS  Google Scholar 

  14. Jayanthi, C. S. et al. Order-N method for a nonorthogonal tight-binding Hamiltonian. Phys. Rev. B 57, 3799–3802 (1998).

    Article  ADS  CAS  Google Scholar 

  15. Datta, S. Electronic Transport in Mesoscopic Systems. (University Press, Cambridge, 1995).

    Book  Google Scholar 

  16. Wu, S. Y. & Jayanthi, C. S. Local analysis via the realspace greens function method. J. Modern Phys. B 9, 1869–1897 (1995).

    Article  ADS  CAS  Google Scholar 

  17. Alfonso, D., Wu, S. Y., Jayanthi, C. S. & Kaxiras, E. Linking chemical reactivity, magic numbers, and local electronic propertiesof clusters. Phys. Rev. B 59, 7745–7750 (1999).

    Article  ADS  CAS  Google Scholar 

  18. Rochefort, A., Lesage, F., Salhub, D. & Avouris, P. Conductance ofdistorted carbon nanotubes. Phys. Rev. B. 60, 13824–13830 (1999).

    Article  ADS  CAS  Google Scholar 

  19. Kim, P. & Lieber, C. Nanotube nanotweezers. Science 286, 2148–2150 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Quate for discussions and use of equipment. This work was supportedby the Defense Advanced Research Projects Agency/Office of Naval Research,National Science Foundation, Semiconductor Research Corporation/Motorola,a David and Lucile Packard Fellowship, a Terman Fellowship, the Laboratoryfor Advance Materials at Stanford, National Nanofabrication Users Networkat Stanford, the Camile Henry-Dreyfus Foundation, the American Chemical Societyand the University of Kentucky Center for Computer Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongjie Dai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tombler, T., Zhou, C., Alexseyev, L. et al. Reversible electromechanical characteristics of carbon nanotubes underlocal-probe manipulation. Nature 405, 769–772 (2000). https://doi.org/10.1038/35015519

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35015519

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing