Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Action potentials must admit calcium to evoke transmitter release

A Correction to this article was published on 30 May 1991

Abstract

THERE are two hypotheses to explain how neurons release transmitter. The calcium hypothesis proposes that membrane depolarization is necessary only for opening calcium channels and increasing internal calcium concentration ([Ca2+]i) near membrane transmitter-release sites1–3. These calcium ions trigger a transient release of neurotransmitter4,5. The calcium-voltage hypothesis postulates that voltage induces a conformational change in a membrane protein rendering it sensitive to calcium such that, in the presence of high [Ca2+]i depolarization directly triggers transmitter release6–9. Here we report that when calcium influx is blocked by cobalt or manganese ions in a calcium-free Ringer, as measured with Fura-2, and [Ca2+]i is elevated by liberation from a caged calcium compound, transmitter release at the crayfish neuromuscular junction is unaffected by presynaptic action potentials. These results support the calcium hypothesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Zucker, R. S. & Landò, L. Science 231, 574–579 (1986).

    Article  ADS  CAS  Google Scholar 

  2. Zucker, R. S. & Haydon, P. G. Nature 335, 360–362 (1988).

    Article  ADS  CAS  Google Scholar 

  3. Zucker, R. S., Landò, L. & Fogelson, A. L. J. Physiol., Paris 81, 237–245 (1986).

    CAS  Google Scholar 

  4. Katz, B. The Release of Neural Transmitter Substances. (Thomas, Springfield, 1969).

    Google Scholar 

  5. Miledi, R. Proc. R. Soc. B183, 421–425 (1973).

    ADS  CAS  Google Scholar 

  6. Llinás, R., Steinberg, I. Z. & Walton, K. Biophys. J. 33, 323–352 (1981).

    Article  Google Scholar 

  7. Dudel, J., Parnas, I. & Parnas, H. Pflügers Arch. 399, 1–10 (1983).

    Article  CAS  Google Scholar 

  8. Parnas, I., Parnas, H. & Dudel, J. Pflügers Arch. 406, 121–130 (1986).

    Article  CAS  Google Scholar 

  9. Parnas, I., Parnas, H. & Dudel, J. Pflügers Arch. 406, 131–137 (1986).

    Article  CAS  Google Scholar 

  10. Hochner, B., Parnas, H. & Parnas, I. Nature 342, 433–435 (1989).

    Article  ADS  CAS  Google Scholar 

  11. Zucker, R. S. A. Rev. Neurosci. 12, 13–31 (1989).

    Article  CAS  Google Scholar 

  12. Kaplan, J. H. & Ellis-Davies, G. C. R. Proc. natn. Acad. Sci. U.S.A. 85, 6571–6575 (1988).

    Article  ADS  CAS  Google Scholar 

  13. Delaney, K. R., Zucker, R. S. & Tank, D. W. J. Neurosci. 9, 3558–3567 (1989).

    Article  CAS  Google Scholar 

  14. Narita, K., Kawasaki, F. & Kita, H. Brain Res. 510, 289–295 (1990).

    Article  CAS  Google Scholar 

  15. Hallam, T. J., Jacob, R. & Merritt, J. E. Biochem. J. 255, 179–184 (1988).

    Article  CAS  Google Scholar 

  16. Foder, B., Scharff, O. & Thastrup, O. Cell Calcium 10, 477–490 (1989).

    Article  CAS  Google Scholar 

  17. Grynkiewicz, G., Poenie, M. & Tsien, R. Y. J. biol. Chem. 260, 3440–3450 (1985).

    CAS  Google Scholar 

  18. Fogelson, A. L. & Zucker, R. S. Biophys. J. 48, 1003–1017 (1985).

    Article  CAS  Google Scholar 

  19. Delaney, K. R. & Zucker, R. S. J. Physiol. 426, 473–498 (1990).

    Article  CAS  Google Scholar 

  20. Bittner, G. D., J. Neurobiol. 20, 386–408 (1988).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mulkey, R., Zucker, R. Action potentials must admit calcium to evoke transmitter release. Nature 350, 153–155 (1991). https://doi.org/10.1038/350153a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/350153a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing