Filamentous microfossils in a 3,235-million-year-old volcanogenic massive sulphide deposit

Article metrics

Abstract

The record of Archaean microfossils is sparse1. Of the few bona fide fossil assemblages, most are from shallow-water settings, and they are typically associated with laminated, stromatolitic sedimentary rocks2,3,4. Microfossils from deep-sea hydrothermal systems have not been reported in Precambrian rocks (> 544 million years old), although thermophilic microbes are ubiquitous in modern sea-floor hydrothermal settings5,6, and apparently have the most ancient lineages7,8. Here, I report the discovery of pyritic filaments, the probable fossil remains of thread-like microorganisms, in a 3,235-million-year-old deep-sea volcanogenic massive sulphide deposit from the Pilbara Craton of Australia. From their mode of occurrence, the micro-organisms were probably thermophilic chemotropic prokaryotes, which inhabited sub-sea-floor hydrothermal environments. They represent the first fossil evidence for microbial life in a Precambrian submarine thermal spring system, and extend the known range of submarine hydrothermal biota by more than 2,700 million years9. Such environments may have hosted the first living systems on Earth, consistent with proposals for a thermophilic origin of life10,11,12,13.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Location and geology of the Sulphur Springs deposit.
Figure 2: Remnant cores and bands containing filaments.
Figure 3: Photomicrographs of filaments from the Sulphur Springs VMS deposit.
Figure 4

References

  1. 1

    Schopf, J. W. in The Proterozoic Biosphere (eds Schopf, J. W. & Klein, C.) 25–39 (Cambridge Univ. Press, New York, 1992).

  2. 2

    Schopf, J. W. & Walter, M. R. in Earth's Earliest Biosphere: Its Origin and Evolution (ed. Schopf, J. W.) 214– 239 (Princeton Univ. Press, Princeton, 1983).

  3. 3

    Walsh, M. M. & Lowe, D. R. Filamentous microfossils from the 3,500-Myr-old Onverwacht Group, Barberton Mountain Land, South Africa. Nature 314, 530–532 ( 1985).

  4. 4

    Awramik, S. M., Schopf, J. W. & Walter, M. R. Filamentous fossil bacteria from the Archean of Western Australia. Precambr. Res. 20, 357– 374 (1983).

  5. 5

    Jannasch, H. W. & Mottl, M. J. Geomicrobiology of deep-sea hydrothermal vents. Science 229, 717–725 (1985).

  6. 6

    Karl, D. M. The Microbiology of Deep-Sea Hydrothermal Vents (CRC, Boca Raton, 1995).

  7. 7

    Kandler, O. in Early Life on Earth Nobel Symposium 84 (ed. Bengtson, S.) 152– 160 (Columbia, New York, 1994).

  8. 8

    Stetter, K. O. in Evolution of Hydrothermal Ecosystems on Earth (and Mars?) Ciba Foundation Symposium 202 (eds Bock, G. R. & Goode, J. A.) 1– 10 (Wiley, Chichester, 1996).

  9. 9

    Duhig, N. C., Davidson, G. J. & Stolz, J. Microbial involvement in the formation of Cambrian sea-floor silica-iron oxide deposits, Australia. Geology 20, 511–514 (1992).

  10. 10

    Corliss, J. B., Baross, J. A. & Hoffman, S. E. An hypothesis concerning the relationship between submarine hot springs and the origin of life on Earth. Oceanol. Acta 4, 59–69 ( 1981).

  11. 11

    Russell, M. J. & Hall, A. J. The emergence of life from iron monosulphide bubbles at a submarine hydrothermal redox and pH front. J. Geol. Soc. Lond. 154, 377– 402 (1997).

  12. 12

    Nisbet, E. G. & Fowler, C. M. R. in Tectonic, Magmatic, Hydrothermal and Biological Segmentation of Mid-Ocean Ridges Geological Society Special Publication 118 (eds MacLeod, C. J., Tyler, P. A. & Walker, C. L.) 239–251 (The Geological Society, London, 1996).

  13. 13

    Huber, C. & Wächtershäuser, G. Peptides by activation of amino acids with CO on (Ni,Fe)S surfaces: Implications for the origin of life. Science 281, 670– 672 (1998).

  14. 14

    Schopf, J. W. & Packer, B. M. Early Archean (3.3-billion to 3.5-billion-year-old) microfossils from Warrawoona Group, Australia. Science 237, 70–73 ( 1987).

  15. 15

    Vearncombe, S. et al. 3.26 Ga black smoker-type mineralization in the Strelley Belt, Pilbara Craton, Western Australia. J. Geol. Soc. Lond. 152, 587–590 (1995).

  16. 16

    Morant, P. The Panorama Zn-Cu VMS deposits, Western Australia. Bull. Aust. Inst. Geosci. 16, 75–84 (1995).

  17. 17

    Brauhart, C. W., Groves, D. I. & Morant, P. Regional alteration systems associated with volcanogenic massive sulphide mineralisation at Panorama, Pilbara, Western Australia. Econ. Geol. 93, 292–302 (1998).

  18. 18

    Buick, R. et al. Geochronology of the Sulphur Springs Group and Strelley Granite: a temporally distinct igneous province in the Archaean Pilbara Craton, Australia. Precambr. Res. (submitted).

  19. 19

    Rasmussen, B. & Buick, R. Oily old ores: Evidence for hydrothermal petroleum generation in an Archean volcanogenic massive sulphide deposit. Geology (in the press).

  20. 20

    Trewin, N. H. & Knoll, A. H. Preservation of Devonian chemotrophic filamentous bacteria in calcite veins. Palaios 14, 288–294 (1999).

  21. 21

    Knoll, A. H. & Barghoorn, E. S. Ambient pyrite in Precambrian chert: New evidence and a theory. Proc. Natl Acad. Sci. USA 71, 2329–2331 (1974).

  22. 22

    Buick, R. Microfossil recognition in Archean rocks: An appraisal of spheroids and filaments from a 3500 m.y. old chert-barite unit at North Pole, Western Australia. Palaios 5, 441–459 ( 1991).

  23. 23

    Knoll, A. H., Strother, P. K. & Rossi, S. Distribution and diagenesis of microfossils from the Lower Proterozoic Duck Creek Dolomite, Western Australia. Precambr. Res. 38, 257–279 ( 1988).

  24. 24

    Bauld, J., D'Amelio, E. & Farmer, J. D. in The Proterozoic Biosphere (eds Schopf, J. W. & Klein, C.) 261–269 (Cambridge Univ. Press, New York, 1992).

  25. 25

    Jones, B., Renaut, R. W. & Rosen, M. R. Biogenicity of silica precipitation around geysers and hotspring vents, North Island, New Zealand. J. Sed. Res. 67, 88–104 (1997).

  26. 26

    Ferris, F. G., Beveridge, T. J. & Fyfe, W. S. Iron-silica crystallite nucleation by bacteria in geothermal sediment. Nature 320, 609– 611 (1986).

  27. 27

    Bazylinski, D. A., Wirsen, C. O. & Jannasch, H. W. Microbial utilization of naturally-occurring hydrocarbons at the Guaymas Basin hydrothermal vent site. Appl. Environ. Microbiol. 55, 2832–2836 ( 1989).

  28. 28

    Rueter, P. et al. Anaerobic oxidation of hydrocarbons in crude oil by new types of sulphate-reducing bacteria. Nature 372, 455–458 (1994).

  29. 29

    Kasting, J. F. Earth's early atmosphere. Science 259, 920 –926 (1993).

  30. 30

    Juniper, S. K. & Fouquet, Y. Filamentous iron-silica deposits from modern and ancient hydrothermal sites. Can. Mineral. 26, 859–869 ( 1988).

Download references

Acknowledgements

I thank T. S. Blake, R. Buick and S. Sheppard for comments and discussion; M. G. Doepel and P. Morant for access to samples; and J. Backhouse, B. David, M. G. Doyle, G. L. England, S. Folkert, P. Morant, S. Reverts, S. Richter and K.-H. Wyrwoll for assistance. This work was supported by an ARC fellowship.

Author information

Correspondence to Birger Rasmussen.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rasmussen, B. Filamentous microfossils in a 3,235-million-year-old volcanogenic massive sulphide deposit. Nature 405, 676–679 (2000) doi:10.1038/35015063

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.