Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Filamentous microfossils in a 3,235-million-year-old volcanogenic massive sulphide deposit


The record of Archaean microfossils is sparse1. Of the few bona fide fossil assemblages, most are from shallow-water settings, and they are typically associated with laminated, stromatolitic sedimentary rocks2,3,4. Microfossils from deep-sea hydrothermal systems have not been reported in Precambrian rocks (> 544 million years old), although thermophilic microbes are ubiquitous in modern sea-floor hydrothermal settings5,6, and apparently have the most ancient lineages7,8. Here, I report the discovery of pyritic filaments, the probable fossil remains of thread-like microorganisms, in a 3,235-million-year-old deep-sea volcanogenic massive sulphide deposit from the Pilbara Craton of Australia. From their mode of occurrence, the micro-organisms were probably thermophilic chemotropic prokaryotes, which inhabited sub-sea-floor hydrothermal environments. They represent the first fossil evidence for microbial life in a Precambrian submarine thermal spring system, and extend the known range of submarine hydrothermal biota by more than 2,700 million years9. Such environments may have hosted the first living systems on Earth, consistent with proposals for a thermophilic origin of life10,11,12,13.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Location and geology of the Sulphur Springs deposit.
Figure 2: Remnant cores and bands containing filaments.
Figure 3: Photomicrographs of filaments from the Sulphur Springs VMS deposit.
Figure 4


  1. Schopf, J. W. in The Proterozoic Biosphere (eds Schopf, J. W. & Klein, C.) 25–39 (Cambridge Univ. Press, New York, 1992).

    Book  Google Scholar 

  2. Schopf, J. W. & Walter, M. R. in Earth's Earliest Biosphere: Its Origin and Evolution (ed. Schopf, J. W.) 214– 239 (Princeton Univ. Press, Princeton, 1983).

    Google Scholar 

  3. Walsh, M. M. & Lowe, D. R. Filamentous microfossils from the 3,500-Myr-old Onverwacht Group, Barberton Mountain Land, South Africa. Nature 314, 530–532 ( 1985).

    Article  ADS  Google Scholar 

  4. Awramik, S. M., Schopf, J. W. & Walter, M. R. Filamentous fossil bacteria from the Archean of Western Australia. Precambr. Res. 20, 357– 374 (1983).

    Article  ADS  Google Scholar 

  5. Jannasch, H. W. & Mottl, M. J. Geomicrobiology of deep-sea hydrothermal vents. Science 229, 717–725 (1985).

    Article  ADS  CAS  Google Scholar 

  6. Karl, D. M. The Microbiology of Deep-Sea Hydrothermal Vents (CRC, Boca Raton, 1995).

    Google Scholar 

  7. Kandler, O. in Early Life on Earth Nobel Symposium 84 (ed. Bengtson, S.) 152– 160 (Columbia, New York, 1994).

    Google Scholar 

  8. Stetter, K. O. in Evolution of Hydrothermal Ecosystems on Earth (and Mars?) Ciba Foundation Symposium 202 (eds Bock, G. R. & Goode, J. A.) 1– 10 (Wiley, Chichester, 1996).

    Google Scholar 

  9. Duhig, N. C., Davidson, G. J. & Stolz, J. Microbial involvement in the formation of Cambrian sea-floor silica-iron oxide deposits, Australia. Geology 20, 511–514 (1992).

    Article  ADS  CAS  Google Scholar 

  10. Corliss, J. B., Baross, J. A. & Hoffman, S. E. An hypothesis concerning the relationship between submarine hot springs and the origin of life on Earth. Oceanol. Acta 4, 59–69 ( 1981).

    Google Scholar 

  11. Russell, M. J. & Hall, A. J. The emergence of life from iron monosulphide bubbles at a submarine hydrothermal redox and pH front. J. Geol. Soc. Lond. 154, 377– 402 (1997).

    Article  CAS  Google Scholar 

  12. Nisbet, E. G. & Fowler, C. M. R. in Tectonic, Magmatic, Hydrothermal and Biological Segmentation of Mid-Ocean Ridges Geological Society Special Publication 118 (eds MacLeod, C. J., Tyler, P. A. & Walker, C. L.) 239–251 (The Geological Society, London, 1996).

    Google Scholar 

  13. Huber, C. & Wächtershäuser, G. Peptides by activation of amino acids with CO on (Ni,Fe)S surfaces: Implications for the origin of life. Science 281, 670– 672 (1998).

    Article  ADS  CAS  Google Scholar 

  14. Schopf, J. W. & Packer, B. M. Early Archean (3.3-billion to 3.5-billion-year-old) microfossils from Warrawoona Group, Australia. Science 237, 70–73 ( 1987).

    Article  ADS  CAS  Google Scholar 

  15. Vearncombe, S. et al. 3.26 Ga black smoker-type mineralization in the Strelley Belt, Pilbara Craton, Western Australia. J. Geol. Soc. Lond. 152, 587–590 (1995).

    Article  CAS  Google Scholar 

  16. Morant, P. The Panorama Zn-Cu VMS deposits, Western Australia. Bull. Aust. Inst. Geosci. 16, 75–84 (1995).

    Google Scholar 

  17. Brauhart, C. W., Groves, D. I. & Morant, P. Regional alteration systems associated with volcanogenic massive sulphide mineralisation at Panorama, Pilbara, Western Australia. Econ. Geol. 93, 292–302 (1998).

    Article  CAS  Google Scholar 

  18. Buick, R. et al. Geochronology of the Sulphur Springs Group and Strelley Granite: a temporally distinct igneous province in the Archaean Pilbara Craton, Australia. Precambr. Res. (submitted).

  19. Rasmussen, B. & Buick, R. Oily old ores: Evidence for hydrothermal petroleum generation in an Archean volcanogenic massive sulphide deposit. Geology (in the press).

  20. Trewin, N. H. & Knoll, A. H. Preservation of Devonian chemotrophic filamentous bacteria in calcite veins. Palaios 14, 288–294 (1999).

    Article  ADS  Google Scholar 

  21. Knoll, A. H. & Barghoorn, E. S. Ambient pyrite in Precambrian chert: New evidence and a theory. Proc. Natl Acad. Sci. USA 71, 2329–2331 (1974).

    Article  ADS  CAS  Google Scholar 

  22. Buick, R. Microfossil recognition in Archean rocks: An appraisal of spheroids and filaments from a 3500 m.y. old chert-barite unit at North Pole, Western Australia. Palaios 5, 441–459 ( 1991).

    Article  ADS  Google Scholar 

  23. Knoll, A. H., Strother, P. K. & Rossi, S. Distribution and diagenesis of microfossils from the Lower Proterozoic Duck Creek Dolomite, Western Australia. Precambr. Res. 38, 257–279 ( 1988).

    Article  ADS  CAS  Google Scholar 

  24. Bauld, J., D'Amelio, E. & Farmer, J. D. in The Proterozoic Biosphere (eds Schopf, J. W. & Klein, C.) 261–269 (Cambridge Univ. Press, New York, 1992).

    Google Scholar 

  25. Jones, B., Renaut, R. W. & Rosen, M. R. Biogenicity of silica precipitation around geysers and hotspring vents, North Island, New Zealand. J. Sed. Res. 67, 88–104 (1997).

    CAS  Google Scholar 

  26. Ferris, F. G., Beveridge, T. J. & Fyfe, W. S. Iron-silica crystallite nucleation by bacteria in geothermal sediment. Nature 320, 609– 611 (1986).

    Article  ADS  CAS  Google Scholar 

  27. Bazylinski, D. A., Wirsen, C. O. & Jannasch, H. W. Microbial utilization of naturally-occurring hydrocarbons at the Guaymas Basin hydrothermal vent site. Appl. Environ. Microbiol. 55, 2832–2836 ( 1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Rueter, P. et al. Anaerobic oxidation of hydrocarbons in crude oil by new types of sulphate-reducing bacteria. Nature 372, 455–458 (1994).

    Article  ADS  CAS  Google Scholar 

  29. Kasting, J. F. Earth's early atmosphere. Science 259, 920 –926 (1993).

    Article  ADS  CAS  Google Scholar 

  30. Juniper, S. K. & Fouquet, Y. Filamentous iron-silica deposits from modern and ancient hydrothermal sites. Can. Mineral. 26, 859–869 ( 1988).

    CAS  Google Scholar 

Download references


I thank T. S. Blake, R. Buick and S. Sheppard for comments and discussion; M. G. Doepel and P. Morant for access to samples; and J. Backhouse, B. David, M. G. Doyle, G. L. England, S. Folkert, P. Morant, S. Reverts, S. Richter and K.-H. Wyrwoll for assistance. This work was supported by an ARC fellowship.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Birger Rasmussen.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rasmussen, B. Filamentous microfossils in a 3,235-million-year-old volcanogenic massive sulphide deposit. Nature 405, 676–679 (2000).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing