Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Intraprotein radical transfer during photoactivation of DNA photolyase

An Erratum to this article was published on 19 October 2000

Abstract

Amino-acid radicals play key roles in many enzymatic reactions1. Catalysis often involves transfer of a radical character within the protein, as in class I ribonucleotide reductase where radical transfer occurs over 35 Å, from a tyrosyl radical to a cysteine1,2,3. It is currently debated whether this kind of long-range transfer occurs by electron transfer, followed by proton release to create a neutral radical, or by H-atom transfer, that is, simultaneous transfer of electrons and protons4,5,6,7. The latter mechanism avoids the energetic cost of charge formation in the low dielectric protein4,5, but it is less robust to structural changes than is electron transfer7. Available experimental data do not clearly discriminate between these proposals. We have studied the mechanism of photoactivation (light-induced reduction of the flavin adenine dinucleotide cofactor) of Escherichia coli DNA photolyase8,9,10 using time-resolved absorption spectroscopy. Here we show that the excited flavin adenine dinucleotide radical abstracts an electron from a nearby tryptophan in 30 ps. After subsequent electron transfer along a chain of three tryptophans, the most remote tryptophan (as a cation radical) releases a proton to the solvent in about 300 ns, showing that electron transfer occurs before proton dissociation. A similar process may take place in photolyase-like blue-light receptors.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Outline of the photoactivation (top panel) and photorepair (bottom panel) reactions of DNA photolyase.
Figure 2: Evidence for a deprotonated tryptophanyl radical (Trp˙).
Figure 3: Monitoring the TrpH˙+ deprotonation in the nanosecond time range.
Figure 4: Study of the reaction FADH˙*..TrpH → FADH-..TrpH˙+ by ultrafast spectroscopy.
Figure 5: Reaction scheme for the radical transfer during photoactivation of E. coli photolyase.

Similar content being viewed by others

References

  1. Stubbe, J. & van der Donk, W. A. Protein radicals in enzyme catalysis. Chem. Rev. 98, 705– 762 (1998).

    Article  CAS  Google Scholar 

  2. Uhlin, U. & Eklund, H. Structure of ribonucleotide reductase protein R1. Nature 370, 533– 539 (1994).

    Article  ADS  CAS  Google Scholar 

  3. Sjöberg, B.-M. The ribonucleotide reductase jigsaw puzzle: a large piece falls into place. Structure 2, 793–796 (1994).

    Article  Google Scholar 

  4. Siegbahn, P. E. M., Blomberg, M. R. A. & Crabtree, R. H. Hydrogen transfer in the presence of amino acid radicals. Theor. Chem. Acc. 97, 289– 300 (1997).

    Article  CAS  Google Scholar 

  5. Siegbahn, P. E. M., Eriksson, L., Himo, F. & Pavlov, M. Hydrogen atom transfer in ribonucleotide reductase (RNR). J. Phys. Chem. 102 , 10622–10629 (1998).

    Article  CAS  Google Scholar 

  6. Cukier, R. I. & Nocera, D. G. Proton coupled electron transfer. Annu. Rev. Phys. Chem. 49, 337– 369 (1998).

    Article  ADS  CAS  Google Scholar 

  7. Page, C. C., Moser, C. C., Chen, X. & Dutton, P. L. Natural engineering principles of electron tunnelling in biological oxidation-reduction. Nature 402, 47–52 ( 1999).

    Article  ADS  CAS  Google Scholar 

  8. Sancar, A. No “end of history” for photolyases. Science 272, 48–49 (1996).

    Article  ADS  CAS  Google Scholar 

  9. Kim, S. -T., Heelis, P. F. & Sancar, A. Role of tryptophans in substrate binding and catalysis by DNA photolyase. Methods Enzymol. 258, 319–343 (1995).

    Article  CAS  Google Scholar 

  10. Yasui, A. & Eker, A. P. M. in DNA Damage and Repair, Vol. 2: DNA Repair in Higher Eukaryotes (eds Nickoloff, J. A. & Hoekstra, M. F.) 9–32 (Humana, Totowa, 1998).

    Google Scholar 

  11. Heelis, P. F., Okamura, T. & Sancar, A. Excited-state properties of Escherichia coli DNA photolyase in the picosecond to millisecond time scale. Biochemistry 29, 5694–5698 ( 1990).

    Article  CAS  Google Scholar 

  12. Li, Y. F., Heelis, P. F. & Sancar, A. Active site of DNA photolyase: tryptophan-306 is the intrinsic hydrogen atom donor essential for flavin radical photoreduction and DNA repair in vitro. Biochemistry 30, 6322–6329 (1991).

    Article  CAS  Google Scholar 

  13. Eker, A. P. M., Yajima, H. & Yasui, A. DNA photolyase from the fungus Neurospora crassa. Purification, characterization and comparison with other photolyases. Photochem. Photobiol. 60, 125–133 (1994).

    Article  CAS  Google Scholar 

  14. Tommos, C., Skalicky, J. J., Pilloud, D. L., Wand, A. J. & Dutton, P. L. De novo proteins as models of radical enzymes. Biochemistry 38, 9495 –9507 (1999).

    Article  CAS  Google Scholar 

  15. Solar, S., Getoff, G., Surdhar, P. S., Armstrong, D. A. & Singh, A. Oxidation of tryptophan and N-methylindole by N3˙, Br2˙-, and (SCN)2˙- radicals in light- and heavy-water solutions: A pulse radiolysis study. J. Phys. Chem. 95, 3636–3643 (1991).

    Article  Google Scholar 

  16. Aubert, C., Mathis, P., Eker, A. P. M. & Brettel, K. Intraprotein electron transfer between tyrosine and tryptophan in DNA photolyase from Anacystis nidulans. Proc. Natl Acad. Sci. USA 96, 5423–5427 (1999).

    Article  ADS  CAS  Google Scholar 

  17. Aubert, C., Brettel, K., Mathis, P., Eker, A. P. M. & Boussac, A. EPR detection of the transient tyrosyl radical in DNA photolyase from Anacystis nidulans. J. Am. Chem. Soc. 121, 8659–8660 (1999).

    Article  CAS  Google Scholar 

  18. Cleland, W. W., O'Leary, M. H. & Northrop, D. B. Isotope Effects on Enzyme-Catalyzed Reactions (Univ. Park Press, Baltimore, London, Tokyo, 1977).

    Google Scholar 

  19. Eigen, M. Proton transfer, acid-base catalysis, and enzymatic hydrolysis Part I: elementary processes. Angew. Chem. Internat. Edn. 3, 1–19 (1964).

    Article  Google Scholar 

  20. Okamura, T., Sancar, A., Heelis, P. F., Hirata, Y. & Mataga, N. Doublet-quartet intersystem crossing of flavin radical in DNA photolyase. J. Am. Chem. Soc. 111, 5967–5969 (1989).

    Article  CAS  Google Scholar 

  21. Park, H. W., Kim, S. T., Sancar, A. & Deisenhofer, J. Crystal structure of DNA photolyase from Escherichia coli. Science 268, 1866–1872 (1995).

    Article  ADS  CAS  Google Scholar 

  22. Cheung, M. S., Daizadeh, I., Stuchebrukhov, A. A. & Heelis, P. F. Pathways of electron transfer in Escherichia coli DNA photolyase: Trp306 to FADH. Biophys J. 76, 1241 –1249 (1999).

    Article  CAS  Google Scholar 

  23. Kim, S. T., Sancar, A., Essenmacher, C. & Babcock, G. T. Time-resolved EPR studies with DNA photolyase: excited-state FADH0 abstracts an electron from Trp-306 to generate FADH-, the catalytically active form of the cofactor. Proc. Natl Acad. Sci. USA 90, 8023–8027 ( 1993).

    Article  ADS  CAS  Google Scholar 

  24. Gindt, Y. M. et al. Origin of the transient electron paramagnetic resonance signals in DNA photolyase. Biochemistry 38, 3857 –3866 (1999).

    Article  CAS  Google Scholar 

  25. Cashmore, A. R., Jarillo, J. A., Xu, Y. -J. & Liu, D. Cryptochromes: blue light receptors for plants and animals. Science 284, 760–765 (1999).

    Article  ADS  CAS  Google Scholar 

  26. Martin, J.-L. & Vos, M. H. Femtosecond measurements of geminate recombination in heme proteins. Methods Enzymol 232 , 416–430 (1994).

    Article  CAS  Google Scholar 

  27. Heelis, P. F., Deeble, D. J., Kim, S. T. & Sancar, A. Splitting of cys-syn cyclobutane thymine–thymine dimers by radiolysis and its relevance to enzymatic photoreactivation. Int. J. Radiat. Biol. 62, 137–143 ( 1992).

    Article  CAS  Google Scholar 

  28. Guex, N. & Peitsch, M. N. SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modeling. Electrophoresis 18, 2714–2723 ( 1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Yasui for providing us with the E. coli photolyase expression construct; P. Barth and P. L. Dutton for helpful discussions; and T. A. Mattioli for critical reading of the manuscript. M.H.V. is supported by CNRS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Brettel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aubert, C., Vos, M., Mathis, P. et al. Intraprotein radical transfer during photoactivation of DNA photolyase . Nature 405, 586–590 (2000). https://doi.org/10.1038/35014644

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35014644

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing