Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Microdomain patterns from directional eutectic solidification and epitaxy


Creating a regular surface pattern on the nanometre scale is important for many technological applications, such as the periodic arrays constructed by optical microlithography that are used as separation media in electrophoresis1, and island structures used for high-density magnetic recording devices2. Block copolymer patterns can also be used for lithography on length scales below 30 nanometres (refs 3,4,5). But for such polymers to prove useful for thin-film technologies, chemically patterned surfaces need to be made substantially defect-free over large areas, and with tailored domain orientation and periodicity. So far, control over domain orientation has been achieved by several routes6,7,8,9, using electric fields, temperature gradients, patterned substrates and neutral confining surfaces. Here we describe an extremely fast process that leads the formation of two-dimensional periodic thin films having large area and uniform thickness, and which possess vertically aligned cylindrical domains each containing precisely one crystalline lamella. The process involves rapid solidification of a semicrystalline block copolymer from a crystallizable solvent between glass substrates using directional solidification and epitaxy. The film is both chemically and structurally periodic, thereby providing new opportunities for more selective and versatile nanopatterned surfaces.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TEM images of solvent-cast, and directionally solidified/epitaxially crystallized, block copolymers.
Figure 2: Diffraction patterns and dark-field image of directionally solidified and epitaxially crystallized block copolymer.
Figure 3: Hypothetical phase diagram of the BA/PS-PE block copolymer system.
Figure 4: Diagrams showing structural evolution during the directional eutectic solidification and epitaxial crystallization of the block copolymer from the crystallizable solvent.

Similar content being viewed by others


  1. Volkmuth, W. D. & Austin, R. H. DNA electrophoresis in microlithographic arrays. Nature 358, 600–602 (1992).

    Article  ADS  CAS  Google Scholar 

  2. Chou, S. Y., Wei, M. S., Krauss, P. R. & Fischer, P. B. Single-domain magnetic pillar array of 35-nm diameter and 65-Gbits/in2 density for ultra high density quantum magnetic storage. J. Appl. Phys. 76, 6673–6675 (1994).

    Article  ADS  CAS  Google Scholar 

  3. Mansky, P., Chaikin, P. M. & Thomas, E. L. Monolayer films of diblock copolymer microdomains for nanolithographic applications. J. Mater. Sci. 30, 1987–1992 (1995)

    Article  ADS  CAS  Google Scholar 

  4. Park, M., Harrison, C. K., Chaikin, P. M., Register, R. A. & Adamson, D. H. Block copolymer lithography: periodic arrays of 1011 holes in 1 square centimeter. Science 276, 1401–1404 (1997).

    Article  CAS  Google Scholar 

  5. Lammertink, R. G. et al. Nanostructured thin films of organic-organometallic block copolymers: one-step lithography with poly(ferrocenylsilanes) by reactive ion etching. Adv. Mater. 12, 98–103 (2000).

    Article  CAS  Google Scholar 

  6. Morkved, T. L. et al. Local control of microdomain orientation in diblock copolymer thin films with electric fields. Science 273, 931–933 (1996).

    Article  ADS  CAS  Google Scholar 

  7. Mansky, P. et al. Large-area domain alignment in block copolymer thin films using electric fields. Macromolecules 31, 4399–4401 (1998).

    Article  ADS  CAS  Google Scholar 

  8. Fasolka, M. et al. Observed substrate topography-mediated lateral patterning of diblock copolymer films. Phys. Rev. Lett. 79, 3018–3021 (1997).

    Article  ADS  CAS  Google Scholar 

  9. Huang, E., Rockford, L., Russell, T. P. & Hawker, C. J. Nanodomain control in copolymer thin films. Nature 395, 757–758 (1998).

    Article  ADS  CAS  Google Scholar 

  10. Muthukumar, M., Ober, C. K. & Thomas, E. L. Competing interactions and levels of ordering in self-organizing polymeric materials. Science 277, 1225–1232 (1997).

    Article  CAS  Google Scholar 

  11. Hashimoto, T., Shibayma, M., Fujimura, M. & Kawai, H. in Block Copolymers, Science and Technology (ed. Meier, D. J.) 63-108 (Harwood Academic, London, 1983).

    Google Scholar 

  12. Bodycomb, J., Funaki, Y., Kimishima, K. & Hashimoto, T. Single grain lamellar microdomain from a diblock copolymer. Macromolecules 32, 2075–2077 (1999).

    Article  ADS  CAS  Google Scholar 

  13. Flemings, M. C. Solidification Processing (McGraw Hill, New York, 1974).

    Book  Google Scholar 

  14. Swei, G. S., Lando, J. B., Reichert, S. E. & Mauritz, K. A. Encyclopedia of Polymer Science and Engineering Vol. 6, p. 209 (Wiley, New York, 1986).

    Google Scholar 

  15. Wittmann, J. C. & Lotz, B. Epitaxial crystallization of polymers on organic and polymeric substrates. Prog. Polym. Sci. 15, 909–948 (1990).

    Article  CAS  Google Scholar 

  16. Reiter, G. et al. Nanometer scale surface patterns with long range order created by crystallization of diblock copolymers. Phys. Rev. Lett. 83, 3844–3847 (1999).

    Article  ADS  CAS  Google Scholar 

  17. Smith, P. & Pennings, A. J. Eutectic crystallization of pseudo binary systems of polyethylene and high melting diluents. Polymer 15, 413–419 (1974).

    Article  CAS  Google Scholar 

  18. Wittmann, J. C., Hodge, A. M. & Lotz, B. Epitaxial crystallization of polymers onto benzoic-acid-polyethylene and paraffins, aliphatic polyesters, and polyamides. J. Polym. Sci. Polym. Phys. Edn 21, 2495–2509 (1983).

    Article  ADS  CAS  Google Scholar 

  19. Dorset, D. L., Hanlon, J. & Karet, G. Epitaxy and structure of paraffin-diluent eutectics. Macromolecules 22, 2169–2176 (1989)

    Article  ADS  CAS  Google Scholar 

  20. Wu, S. Polymer Interface and Adhesion (Marcel Dekker, New York, 1982).

    Google Scholar 

  21. Thomas, E. L. & Ast, D. Image intensification and the electron microscopy of radiation sensitive polymers. Polymer 15, 37–41 (1974).

    Article  CAS  Google Scholar 

  22. Kim, G. & Libera, M. Kinetic constraints on the development of surface microstructures in SBS thin films. Macromolecules 31, 2670–2672 (1998).

    Article  ADS  CAS  Google Scholar 

Download references


We thank J.C. Wittmann, Y. Cohen, C. Thompson, C. Carter and L. Fetters for conversations; L. Fetters also synthesized the copolymer. This work was supported by the NSF, ACS-PRF and US-France NSF-CNRS.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Edwin L. Thomas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Rosa, C., Park, C., Thomas, E. et al. Microdomain patterns from directional eutectic solidification and epitaxy. Nature 405, 433–437 (2000).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing