Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Functional diversity governs ecosystem response to nutrient enrichment

Abstract

The relationship between species diversity and ecosystem functioning is a central topic in ecology today1,2. Classical approaches to studying ecosystem responses to nutrient enrichment have considered linear food chains3,4. To what extent ecosystem structure, that is, the network of species interactions, affects such responses is currently unknown. This severely limits our ability to predict which species or functional groups will benefit or suffer from nutrient enrichment and to understand the underlying mechanisms5,6,7,8. Here our approach takes ecosystem complexity into account6,9,10 by considering functional diversity at each trophic level11,12,13,14. We conducted a mesocosm experiment to test the effects of nutrient enrichment in a lake ecosystem. We developed a model of intermediate complexity, which separates trophic levels into functional groups according to size and diet. This model successfully predicted the experimental results, whereas linear food-chain models did not. Our model shows the importance of functional diversity and indirect interactions in the response of ecosystems to perturbations, and indicates that new approaches are needed for the management of freshwater ecosystems subject to eutrophication.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Food-web model describing direct interactions among functional groups in the lake ecosystem, predicted net effects of nutrient enrichment on the equilibrium values of functional groups, and corresponding experimental results in mesocosms. P, mineral phosphorus; A1, edible algae; A2 , protected algae; Ap, periphyton; H1, small herbivores; H2, large herbivores; C1, invertebrate carnivores; C2, fish.

Similar content being viewed by others

References

  1. Johnson, K. H., Vogt, K. A., Clark, H. J., Schmitz, O. J. & Vogt, D. J. Biodiversity and the productivity and stability of ecosystems. Trends Ecol. Evol. 11, 372–377 (1996).

    Article  CAS  Google Scholar 

  2. Chapin III, F. S. et al. Biotic control over the functioning of ecosystems. Science 277, 500–504 ( 1997).

    Article  Google Scholar 

  3. Oksanen, L., Fretwell, S. D., Arruda, J. & Niemela, P. Exploitation ecosystems in gradients of primary productivity. Am. Nat. 118, 240–261 ( 1981).

    Article  Google Scholar 

  4. Arditi, R. & Ginzburg, L. R. Coupling in predator-prey dynamics: Ratio-dependence. J. Theor. Biol. 139, 311 –326 (1989).

    Article  Google Scholar 

  5. Hunter, M. D. & Price, P. W. Playing chutes and ladders: heterogeneity and the relative roles of bottom-up and top-down forces in natural communities. Ecology 73, 724–732 (1992).

    Google Scholar 

  6. Polis, G. A. Food webs, trophic cascades and community structure. Aust. J. Ecol. 19, 121–136 ( 1994).

    Article  Google Scholar 

  7. Persson, L., Bengtsson, J., Menge, B. A. & Power, M. E. in Food Webs. Integration of Patterns and Dynamics (eds Polis, G. A. & Winemiller, K. O.) 396–434 (Chapman & Hall, New York, 1996).

    Google Scholar 

  8. Kaunzinger, C. M. K. & Morin, P. J. Productivity controls food-chain properties in microbial communities. Nature 395, 495–497 ( 1998).

    Article  ADS  CAS  Google Scholar 

  9. McCann, K., Hastings, A. & Huxel, G. R. Weak trophic interactions and the balance of nature. Nature 395, 794–798 (1998).

    Article  ADS  CAS  Google Scholar 

  10. Polis, G. A. Stability is woven by complex webs. Nature 395, 744–745 (1998).

    Article  ADS  Google Scholar 

  11. Leibold, M. A. Resource edibility and the effects of predators and productivity on the outcome of trophic interactions. Am. Nat. 134, 922 –949 (1989).

    Article  Google Scholar 

  12. Spiller, D. A. & Schoener, T. W. A terrestrial field experiment showing the impact of eliminating top predators on foliage damage. Nature 347, 469– 472 (1990).

    Article  ADS  Google Scholar 

  13. Leibold, M. A. & Wilbur, H. M. Interactions between food-web structure and nutrients on pond organisms. Nature 360, 341–343 ( 1992).

    Article  ADS  Google Scholar 

  14. Abrams, P. A. Effect of increased productivity on the abundances of trophic levels. Am. Nat. 141, 351–371 ( 1993).

    Article  Google Scholar 

  15. Gleeson, S. K. Density dependence is better than ratio dependence. Ecology 75, 1834–1835 (1994).

    Article  Google Scholar 

  16. Mittelbach, G. G., Osenberg, C. W. & Leibold, M. A. in Size-structured Populations. Ecology and evolution (eds Ebenman, B. & Persson, L.) 217–235 (Springer, Berlin, 1988).

    Google Scholar 

  17. Pimm, S. L., Lawton, J. H. & Cohen, J. E. Food web patterns and their consequences. Nature 350, 669–674 ( 1991).

    Article  ADS  Google Scholar 

  18. Levins, R. The qualitative analysis of partially specified systems. Ann. NY Acad. Sci. 231, 123-138 (1974 ).

    Article  ADS  Google Scholar 

  19. Bender, E. A., Case, T. J. & Gilpin, M. E. Perturbation experiments in community ecology: theory and practice. Ecology 65, 1– 13 (1984).

    Article  Google Scholar 

  20. Leibold, M. A., Chase, J. M., Shurin, J. B. & Downing, A. L. Species turnover and the regulation of trophic structure. Annu. Rev. Ecol. Syst. 28, 467–94 (1997).

    Article  Google Scholar 

  21. Menge, B. A. Dectection of direct versus indirect effects: were experiments long enough? Am. Nat. 149, 801–823 (1997).

    Article  CAS  Google Scholar 

  22. Gulati, R. D., Lammens, E. H. R. R., Meijer, M. -L. & van Donk, E. Biomanipulation— Tool for Water Management. (Kluwer, Dordrecht, 1990).

    Book  Google Scholar 

  23. Yodzis, P. in Food Webs. Integration of Patterns & Dynamics (eds Polis, G. A. & Winemiller, K. O.) 192–200 (Chapman & Hall, New York, 1996).

    Google Scholar 

  24. Menge, B. A. Indirect effects in marine rocky intertidal interaction webs: patterns and importance. Eco.l Monogr. 65, 21– 74 (1995).

    Article  Google Scholar 

  25. Power, M. E. Top-down and bottom-up forces in food webs: do plants have primacy? Ecology 73, 733–746 ( 1992).

    Article  Google Scholar 

  26. Lacroix, G. & Lescher-Moutoué, F. Interaction effects of nutrient loading and density of young-of-the-year cyprinids on eutrophication in a shallow lake: an experimental mesocosm study. Mem. Ist. Ital. Idrobiol. 48, 53–74 ( 1991).

    Google Scholar 

  27. DeMelo, R., France, R. & McQueen, D. J. Biomanipulation: hit or myth? Limnol. Oceanogr. 29, 941–948 ( 1992).

    Google Scholar 

  28. Lacroix, G., Lescher-Moutoué, F. & Pourriot, R. in Aspects of the Genesis and Maintenance of Biological Diversity (eds Hochberg, M. E., Clobert, J. & Barbault, R.) 162–179 (Oxford Univ. Press, New York, 1996).

    Google Scholar 

  29. Hamlaoui, S., Couté, A., Lacroix, G. & Lescher-Moutoué, F. Nutrient and fish effects on the morphology of the Dinoflagellate. C. R. Acad. Sci. Paris Sci. Vie 321, 39– 45 (1998).

    Article  Google Scholar 

  30. Reynolds, C. S. Vegetation Processes in the Pelagic: A Model for Ecosystem Theory. (Ecology Institute, Oldendorf/Luhe, 1997).

    Google Scholar 

Download references

Acknowledgements

We thank A. Bertolo, C. de Mazancourt, A. Gonzalez, M. Hochberg, N. Mouquet, O. Petchey, S. Ponsard, M. van Baalen and S. Yachi for comments on the manuscript. This work was supported by grants from the ‘Programme Environnement, Vies et Sociétés’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florence D. Hulot.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hulot, F., Lacroix, G., Lescher-Moutoué, F. et al. Functional diversity governs ecosystem response to nutrient enrichment . Nature 405, 340–344 (2000). https://doi.org/10.1038/35012591

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35012591

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing