Getting the measure of biodiversity

Abstract

The term ‘biodiversity’ is a simple contraction of ‘biological diversity’, and at first sight the concept is simple too: biodiversity is the sum total of all biotic variation from the level of genes to ecosystems. The challenge comes in measuring such a broad concept in ways that are useful. We show that, although biodiversity can never be fully captured by a single number, study of particular facets has led to rapid, exciting and sometimes alarming discoveries. Phylogenetic and temporal analyses are shedding light on the ecological and evolutionary processes that have shaped current biodiversity. There is no doubt that humans are now destroying this diversity at an alarming rate. A vital question now being tackled is how badly this loss affects ecosystem functioning. Although current research efforts are impressive, they are tiny in comparison to the amount of unknown diversity and the urgency and importance of the task.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Two samples of insects from different locations, illustrating two of the many different measures of diversity: species richness and species evenness.
Figure 2: Taxonomic boundaries are not comparable among major groups.
Figure 3: Subtaxa within taxa are often distributed unevenly.
Figure 4: Species richness in major groups of organisms.

References

  1. 1

    Whittaker, R. H. Evolution and measurement of species diversity. Taxon 21, 213–251 (1972).

    Article  Google Scholar 

  2. 2

    Magurran, A. E. Ecological Diversity and its Measurement (Croom Helm, London, 1988).

    Google Scholar 

  3. 3

    Balmford, A., Green, M. J. B. & Murray, M. G. Using higher-taxon richness as a surrogate for species-richness: I. Regional tests. Proc. R. Soc. Lond. B 263, 1267–1274 (1996).

    Article  ADS  Google Scholar 

  4. 4

    Sepkoski, J. J. Jr Rates of speciation in the fossil record. Proc. R. Soc. Lond. B 353, 315–326 (1998).

    Google Scholar 

  5. 5

    Pine, R. H. New mammals not so seldom. Nature 368 ( 1994).

  6. 6

    Paxton, C. G. M. A cumulative species description curve for large open water marine animals . J. Mar. Biol. Assoc. 78, 1389– 1391 (1998).

    Article  Google Scholar 

  7. 7

    Hawksworth, D. L. & Kalin-Arroyo, M. T. in Global Biodiversity Assessment (ed. Heywood, V. H.) 107– 191 (Cambridge Univ. Press, Cambridge, 1995).

    Google Scholar 

  8. 8

    Funch, P. & Kristensen, R. M. Cycliophora is a new phylum with affinities to Entoprocta and Ectoprocta. Nature 378, 711–714 (1995).

    Article  ADS  CAS  Google Scholar 

  9. 9

    Fuhrman, J. A. & Campbell, L. Marine ecology: microbial microdiversity . Nature 393, 410–411 (1998).

    Article  ADS  CAS  Google Scholar 

  10. 10

    Gross, M. Life on the Edge (Plenum, New York, 1998).

    Google Scholar 

  11. 11

    Abbott, A. Battle lines drawn between ‘nanobacteria’ researchers. Nature 401, 105 (1999).

    Article  ADS  CAS  Google Scholar 

  12. 12

    Tristem, M. Identification and characterization of novel human endogenous retrovirus families by phylogenetic screening of the human genome mapping project database. J. Virol. 74, 3715–3730 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. 13

    Kidwell, M. G. & Lisch, D. Transposable elements as sources of variation in animals and plants. Proc. Natl Acad. Sci. USA 94, 7704–7711 ( 1997).

    Article  ADS  CAS  Google Scholar 

  14. 14

    Goddard, M. R. & Burt, A. Recurrent invasion and extinction of a selfish gene. Proc. Natl Acad. Sci. USA 96, 13880–13885 (1999).

    Article  ADS  CAS  Google Scholar 

  15. 15

    Rylands, A. B., Mittermeier, R. A. & Luna, E. R. A species list for the New World Primates (Platyrrhini): distribution by country, endemism, and conservation status according to the Mace-Lande system. Neotrop. Primates 3S, 113–160 (1995).

    Google Scholar 

  16. 16

    Cracraft, J. Species concepts and speciation analysis. Curr. Ornithol. 1, 159–187 (1983).

    Article  Google Scholar 

  17. 17

    Avise, J. C. & Wollenberg, K. Phylogenetics and the origin of species. Proc. Natl Acad. Sci. USA 94, 7748–7755 (1997).

    Article  ADS  CAS  Google Scholar 

  18. 18

    Hanken, J. Why are there so many new amphibian species when amphibians are declining? Trends Ecol. Evol. 14, 7– 8 (1999).

    Article  CAS  Google Scholar 

  19. 19

    Harvey, P. H., Leigh Brown, A. J., Maynard Smith, J. & Nee, S. New Uses for New Phylogenies (Oxford Univ. Press, Oxford, 1996).

    Google Scholar 

  20. 20

    Nee, S., Barraclough, T. G. & Harvey, P. H. in Biodiversity: A Biology of Numbers and Difference (ed. Gaston, K. J.) 230–252 (Blackwell Science, Oxford, 1996).

    Google Scholar 

  21. 21

    Pagel, M. Inferring the historical patterns of biological evolution. Nature 401, 877–884 ( 1999).

    Article  ADS  CAS  Google Scholar 

  22. 22

    Sanderson, M. J. A nonparametric approach to estimating divergence times in the absence of rate constancy. Mol. Biol. Evol. 14, 1218 –1231 (1997).

    Article  CAS  Google Scholar 

  23. 23

    Wang, D. Y.-C, Kumar, S. & Hedges, S. B. Divergence time estimates for the early history of animal phyla and the origin of plants, animals and fungi. Proc. R. Soc. Lond. B 266, 163–171 ( 1999).

    Article  CAS  Google Scholar 

  24. 24

    Bromham, L., Phillips, M. J. & Penny, D. Growing up with dinosaurs: molecular dates and the mammalian radiation. Trends Ecol. Evol. 14, 113– 118 (1999).

    Article  CAS  Google Scholar 

  25. 25

    Cooper, A. & Penny, D. Mass survival of birds across the Cretaceous-Tertiary boundary: molecular evidence. Science 275, 1109–1113 (1997).

    Article  CAS  Google Scholar 

  26. 26

    Foote, M., Hunter, J. P., Janis, C. M. & Sepkoski, J. J. Evolutionary and preservational constraints on the origins of biological groups: divergence times of eutherian mammals. Science 283, 1310–1314 (1999).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. 27

    Cooper, A. & Fortey, R. Evolutionary explosions and the phylogenetic fuse. Trends Ecol. Evol. 13, 151– 156 (1998).

    Article  CAS  Google Scholar 

  28. 28

    Darwin, C. On the Origin of Species by Means of Natural Selection (Murray, London, 1859).

    Google Scholar 

  29. 29

    Dial, K. P. & Marzluff, J. M. Nonrandom diversification within taxonomic assemblages. Syst. Zool. 38, 26 –37 (1989).

    Article  Google Scholar 

  30. 30

    Avise, J. C. & Johns, G. C. Proposal for a standardized temporal scheme of biological classification for extant species. Proc. Natl Acad. Sci. USA 96, 7358–7363 (1999).

    Article  ADS  CAS  Google Scholar 

  31. 31

    Purvis, A. in New Uses for New Phylogenies (eds Harvey, P. H., Leigh Brown, A. J., Maynard Smith, J. & Nee, S.) 153–168 (Oxford Univ. Press, Oxford, 1996).

    Google Scholar 

  32. 32

    Mooers, A. Ø. & Heard, S. B. Evolutionary process from phylogenetic tree shape. Q. Rev. Biol. 72, 31–54 (1997).

    Article  Google Scholar 

  33. 33

    Heard, S. B. & Hauser, D. L. Key evolutionary innovations and their ecological mechanisms. Hist. Biol. 10, 151–173 (1995).

    Article  Google Scholar 

  34. 34

    Mitter, C., Farrell, B. & Wiegmann, B. The phylogenetic study of adaptive zones: has phytophagy promoted insect diversification? Am. Nat. 132, 107–128 (1988).

    Article  Google Scholar 

  35. 35

    Marzluff, J. M. & Dial, K. P. Life history correlates of taxonomic diversity. Ecology 72, 428– 439 (1991).

    Article  Google Scholar 

  36. 36

    Barraclough, T. G., Harvey, P. H. & Nee, S. Sexual selection and taxonomic diversity in passerine birds. Proc. R. Soc. Lond. B 259, 211– 215 (1995).

    Article  ADS  Google Scholar 

  37. 37

    Owens, I. P. F., Bennett, P. M. & Harvey, P. H. Species richness among birds: body size, life history, sexual selection or ecology? Proc. R. Soc. Lond. B 266, 933–939 (1999).

    Article  Google Scholar 

  38. 38

    Gardezi, T. F. & da Silva, J. Diversity in relation to body size in mammals: a comparative study. Am. Nat. 153, 110–123 ( 1999).

    Article  Google Scholar 

  39. 39

    Gittleman, J. L. & Purvis, A. Body size and species richness in primates and carnivores. Proc. R. Soc. Lond. B 265, 113–119 (1998).

    Article  CAS  Google Scholar 

  40. 40

    Sanderson, M. J. & Donoghue, M. J. Shifts in diversification rate with the origin of angiosperms. Science 264, 1590–1593 (1994).

    Article  ADS  CAS  Google Scholar 

  41. 41

    Pagel, M. Inferring evolutionary processes from phylogenies. Zool. Scripta 26, 331–348 ( 1997).

    Article  Google Scholar 

  42. 42

    Kelley, S. T. & Farrell, B. D. Is specialization a dead end? The phylogeny of host use in Dendroctonus bark beetles (Scolytidae) . Evolution 52, 1731–1743 (1998).

    Article  CAS  Google Scholar 

  43. 43

    Harvey, P. H. & Pagel, M. D. The Comparative Method in Evolutionary Biology (Oxford Univ. Press, Oxford, 1991).

    Google Scholar 

  44. 44

    Rosenzweig, M. L. Colonial birds probably do speciate faster. Evol. Ecol. 10, 681–683 (1996).

    Article  Google Scholar 

  45. 45

    Barraclough, T. G., Nee, S. & Harvey, P. H. Sister-group analysis in identifying correlates of diversification . Evol. Ecol. 12, 751–754 (1998).

    Article  Google Scholar 

  46. 46

    Benton, M. J. The Fossil Record 2 (Chapman & Hall, London, 1993 ).

    Google Scholar 

  47. 47

    Sepkoski, J. J. A compendium of fossil marine families. Milwaukee Publ. Mus. Contrib. Biol. Geol. 51, 1–125 ( 1982).

    Google Scholar 

  48. 48

    Benton, M. J. Diversification and extinction in the history of life. Science 268, 52–58 ( 1995).

    Article  ADS  CAS  Google Scholar 

  49. 49

    Courtillot, V. & Gaudemer, Y. Effects of mass extinctions on biodiversity. Nature 381, 146–148 (1996).

    Article  ADS  CAS  Google Scholar 

  50. 50

    Benton, M. J. Models for the diversification of life. Trends Ecol. Evol. 12, 490–495 (1997).

    Article  CAS  Google Scholar 

  51. 51

    Kirchner, J. W. & Weil, A. Delayed biological recovery from extinctions throughout the fossil record. Nature 404, 177–180 ( 2000).

    Article  ADS  CAS  Google Scholar 

  52. 52

    Avise, J. C., Walker, D. & Johns, G. C. Speciation durations and Pleistocene effects on vertebrate phylogeography. Proc. R. Soc. Lond. B 265, 1707–1712 (1998).

    Article  CAS  Google Scholar 

  53. 53

    Zink, R. M. & Slowinski, J. B. Evidence from molecular systematics for decreased avian diversification in the Pleistocene epoch. Proc. Natl Acad. Sci. USA 92, 5832– 5835 (1995).

    Article  ADS  CAS  Google Scholar 

  54. 54

    Marshall, C. R. in The Adequacy of the Fossil Record (ed. Paul, C. R. C.) 23–53 (Wiley, Chichester, 1998).

    Google Scholar 

  55. 55

    Alroy, J. in Biodiversity Dynamics (eds McKinney, M. L. & Drake, J. A.) 232–287 (Columbia Univ. Press, New York, 1999).

    Google Scholar 

  56. 56

    Alroy, J. Constant extinction, constrained diversification, and uncoordinated stasis in North American mammals. Palaeogeogr. Palaeoclimatol. Palaeoecol. 127, 285–311 ( 1996).

    Article  Google Scholar 

  57. 57

    Van Valkenburgh, B. & Janis, C. in Species Diversity in Ecological Communities (eds Ricklefs, R. E. & Schluter, D.) 330–340 (Chicago Univ. Press, Chicago, 1993).

    Google Scholar 

  58. 58

    Kauffman, E. G. & Fagerstrom, J. A. in Species Diversity in Ecological Communities (eds Ricklefs, R. E. & Schluter, D.) 315–329 (Chicago Univ. Press, Chicago, 1993).

    Google Scholar 

  59. 59

    McKinney, M. L. in Biodiversity Dynamics (eds McKinney, M. L. & Drake, J. A.) 1–16 (Columbia Univ. Press, New York, 1999).

    Google Scholar 

  60. 60

    Foote, M. in Evolutionary Paleobiology (eds Jablonski, D., Erwin, D. H. & Lipps, J. H.) 62–86 (Chicago Univ. Press, Chicago, 1996).

    Google Scholar 

  61. 61

    Roy, K. & Foote, M. Morphological approaches to measuring biodiversity. Trends Ecol. Evol. 12, 277 –281 (1997).

    Article  CAS  Google Scholar 

  62. 62

    Schluter, D. Ecological causes of adaptive radiation. Am. Nat. 148 (Suppl.), S40–S64 ( 1996).

    Article  Google Scholar 

  63. 63

    Barraclough, T. G., Vogler, A. P. & Harvey, P. H. Revealing the factors that promote speciation. Phil. Trans. R. Soc. Lond. B 353, 241– 249 (1998).

    Article  Google Scholar 

  64. 64

    Barbault, R. & Sastrapradja, S. D. in Global Biodiversity Assessment (ed. Heywood, V. H.) 193–274 (Cambridge Univ. Press, Cambridge, 1995).

    Google Scholar 

  65. 65

    May, R. M., Lawton, J. H. & Stork, N. E. in Extinction Rates (eds Lawton, J. H. & May, R. M.) 1–24 (Oxford Univ. Press, Oxford, 1995).

    Google Scholar 

  66. 66

    Hughes, J. B., Daily, G. C. & Ehrlich, P. R. Population diversity: its extent and extinction. Science 278, 689–692 ( 1997).

    Article  ADS  CAS  Google Scholar 

  67. 67

    Pimm, S. L. in Conservation Science and Action (ed. Sutherland, W. J.) 20– 38 (Blackwell Science, Oxford, 1998).

    Google Scholar 

  68. 68

    Wilson, E. O. The Diversity of Life (Norton, New York, 1992).

    Google Scholar 

  69. 69

    Grelle, C. E. d. V., Fonseca, G. A. B., Fonseca, M. T. & Costa, L. P. The question of scale in threat analysis: a case study with Brazilian mammals. Anim. Conserv. 2, 149–152 (1999).

    Article  Google Scholar 

  70. 70

    Cowlishaw, G. Predicting the pattern of decline of African primate diversity: an extinction debt from historical deforestation. Conserv. Biol. 13, 1183–1193 (1999).

    Article  Google Scholar 

  71. 71

    Nee, S. & May, R. M. Extinction and the loss of evolutionary history. Science 278, 692– 694 (1997).

    Article  ADS  CAS  Google Scholar 

  72. 72

    Heard, S. B. & Mooers, A. Ø. Phylogenetically patterned speciation rates and extinction risks change the loss of evolutionary history during extinctions. Proc. R. Soc. Lond. B 267, 613–620 (2000).

    Article  CAS  Google Scholar 

  73. 73

    Mace, G. M. & Balmford, A. in Future Priorities for the Conservation of Mammalian Diversity (eds Entwhistle, A. & Dunstone, N.) (Cambridge Univ. Press, Cambridge, 1999).

    Google Scholar 

  74. 74

    Bennett, P. M. & Owens, I. P. F. Variation in extinction risk among birds: chance or evolutionary predisposition? Proc. R. Soc. Lond. B 264, 401–408 (1997).

    Article  ADS  Google Scholar 

  75. 75

    McKinney, M. L. Extinction vulnerability and selectivity: combining ecological and paleontological views. Annu. Rev. Ecol. Syst. 28, 495– 516 (1997).

    Article  Google Scholar 

  76. 76

    Russell, G. J., Brooks, T. M., McKinney, M. M. & Anderson, C. G. Present and future taxonomic selectivity in bird and mammal extinctions. Conserv. Biol. 12, 1365–1376 (1998).

    Article  Google Scholar 

  77. 77

    McKinney, M. L. Branching models predict loss of many bird and mammal orders within centuries . Anim. Conserv. 1, 159– 164 (1998).

    Article  Google Scholar 

  78. 78

    Purvis, A., Agapow, P.-M, Gittleman, J. L. & Mace, G. M. Nonrandom extinction risk and the loss of evolutionary history. Science 288, 328–330 ( 2000).

    Article  ADS  CAS  Google Scholar 

  79. 79

    Kunin, W. E. & Lawton, J. H. in Biodiversity: a Biology of Numbers and Difference (ed. Gaston, K. J.) 283– 308 (Blackwell Science, Oxford, 1996).

    Google Scholar 

  80. 80

    MacGillivray, C. W. et al. Testing predictions of the resistance and resilience of vegetation subjected to extreme events. Funct. Ecol. 9, 640–649 (1995).

    Article  Google Scholar 

  81. 81

    Wardle, D. A., Zackrisson, O., Hörnberg, G. & Gallet, C. The influence of island area on ecosystem properties. Science 277, 1296–1299 (1997).

    Article  CAS  Google Scholar 

  82. 82

    Jones, C. J., Lawton, J. H. & Shachak, M. Positive and negative effects of organisms as physical ecosystem engineers. Ecology 78, 1946– 1957 (1997).

    Article  Google Scholar 

  83. 83

    Darwin, C. & Wallace, A. On the tendency of species to form varieties; and on the perpetuation of varieties and species by natural means of selection. J. Proc. Linn. Soc. Lond., Zool. 3, 45–62 (1858).

    Article  Google Scholar 

  84. 84

    Tilman, D. Ecological consequences of biodiversity: a search for general principles. Ecology 80, 1455–1474 ( 1999).

    Google Scholar 

  85. 85

    Spehn, E. M., Joshi, J., Schmid, B., Diemer, M. & Körner, C. Aboveground resource use increases with plant species richness in experimental grassland ecosystems. Funct. Ecol. 14 (in the press).

  86. 86

    Allison, G. W. The implications of experimental design for biodiversity manipulations. Am. Nat. 153, 26–45 ( 1999).

    Article  Google Scholar 

  87. 87

    Schwartz, M. W. et al. Linking biodiversity to ecosystem functioning: implications for conservation ecology. Oecologia 122, 297–305 (2000).

    Article  ADS  CAS  Google Scholar 

  88. 88

    Knops, J. M. H. et al. Effects of plant species richness on invasion dynamics, disease outbreaks, insect abundance and diversity. Ecol. Lett. 2, 286–294 ( 1999).

    Article  Google Scholar 

  89. 89

    Stachowicz, J. J., Whitlatch, R. B. & Osman, R. W. Species diversity and invasion resistance in a marine ecosystem. Science 286, 1577– 1579 (1999).

    Article  CAS  Google Scholar 

  90. 90

    Van der Heijden, M. G. A. et al. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396, 69–72 (1998).

    Article  ADS  CAS  Google Scholar 

  91. 91

    Loreau, M. Biodiversity and ecosystem functioning: a mechanistic model. Proc. Natl Acad. Sci. USA 95, 5632–5636 (1998).

    Article  ADS  CAS  Google Scholar 

  92. 92

    Tilman, D. Diversity and production in European Grasslands. Science 286, 1099–1100 (1999).

    Article  CAS  Google Scholar 

  93. 93

    Williams, P. H. & Humphries, C. J. in Biodiversity: A Biology of Numbers and Difference (ed. Gaston, K. J.) 54– 76 (Blackwell Scientific, Oxford, 1996).

    Google Scholar 

  94. 94

    May, R. M. in Ecology and Evolution of Communities (eds Cody, M. L. & Diamond, J. M.) 81–120 (Belknap, Cambridge, MA, 1975).

    Google Scholar 

  95. 95

    Corbet, G. B. & Hill, J. E. A World List of Mammalian Species (Natural History Museum, London, 1991).

    Google Scholar 

  96. 96

    Bisby, F. A. in Global Biodiversity Assessment (ed. Heywood, V. H.) 21– 106 (Cambridge Univ. Press, Cambridge, 1995).

    Google Scholar 

  97. 97

    Myers, N., Mittermeier, R. A., Mittermeier, C. G., de Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).

    Article  ADS  CAS  Google Scholar 

  98. 98

    Groombridge, J. J., Jones, C. G., Bruford, M. W. & Nichols, R. A. 'Ghost' alleles of the Mauritius kestrel. Nature 403 , 616 (2000).

  99. 99

    Williams, P. H., Humphries, C. J. & Vane-Wright, R. I. Centres of seed-plant diversity: the family way. Proc. R. Soc. Lond. B 256, 67–70 (1994).

    Article  ADS  Google Scholar 

  100. 100

    Mallet, J. in Biodiversity: A Biology of Numbers and Difference (ed. Gaston, K. J.) 13–53 (Blackwell Science, Oxford, 1996).

    Google Scholar 

  101. 101

    Gould, S. J. Wonderful Life: The Burgess Shale and the Nature of History (Norton, New York, 1989).

    Google Scholar 

  102. 102

    Moritz, C. Defining 'evolutionarily significant units' for conservation. Trends Ecol. Evol. 9, 373–375 (1994).

    Article  CAS  Google Scholar 

  103. 103

    Faith, D. P. in Systematics and Conservation Evaluation (eds Forey, P. L., Humphries, C. J. & Vane-Wright, R. I.) 251–268 (Clarendon, Oxford, 1994).

    Google Scholar 

  104. 104

    Vane-Wright, R. I., Humphries, C. J. & Williams, P. H. What to protect? Systematics and the agony of choice . Biol. Conserv. 55, 235– 254 (1991).

    Article  Google Scholar 

  105. 105

    Pressey, R. L., Johnson, I. R. & Wilson, P. D. Shades of irreplaceability: towards a measure of the contribution of sites to a reservation goal. Biodiv. Conserv. 3, 242–262 ( 1994).

    Article  Google Scholar 

  106. 106

    Russell, G. J. in Biodiversity Dynamics (eds McKinney, M. L. & Drake, J. A.) 377–404 (Columbia Univ. Press, New York, 1999).

    Google Scholar 

  107. 107

    Grace, J. B. The factors controlling species density in herbaceous plant communities: an assessment. Persp. Plant Ecol. Evol. Syst. 2, 1–28 (1999).

    Article  Google Scholar 

  108. 108

    Waide, R. B. et al. The relationship between productivity and species richness . Annu. Rev. Ecol. Syst. 30, 257– 300 (1999).

    Article  Google Scholar 

Download references

Acknowledgements

We thank T. Barraclough, C. Godfray, R. Grenyer, P. Harvey, C. Humphries, N. Isaac, G. Mace, A. Minns, B. Schmid and R. Vane-Wright for discussion and comments, and NERC and the EC BIODEPTH project for support.

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Purvis, A., Hector, A. Getting the measure of biodiversity. Nature 405, 212–219 (2000). https://doi.org/10.1038/35012221

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing