Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Non-fluorous polymers with very high solubility in supercritical CO2 down to low pressures

Abstract

Liquid and supercritical carbon dioxide have attracted much interest as environmentally benign solvents1, but their practical use has been limited by the need for high CO2 pressures to dissolve even small amounts of polar, amphiphilic, organometallic, or high-molecular-mass compounds2,3,4. So-called ‘CO2-philes’ efficiently transport insoluble or poorly soluble materials into CO2 solvent, resulting in the development of a broad range of CO2-based processes, including homogeneous and heterogeneous polymerization, extraction of proteins and metals, and homogeneous catalysis5,6,7,8,9,10,11. But as the most effective CO2-philes are expensive fluorocarbons, such as poly(perfluoroether), the commercialization of otherwise promising CO2-based processes has met with only limited success. Here we show that copolymers can act as efficient, non-fluorous CO2-philes if their constituent monomers are chosen to optimize the balance between the enthalpy and entropy of solute–copolymer and copolymer–copolymer interactions. Guided by heuristic rules regarding these interactions, we have used inexpensive propylene and CO2 to synthesize a series of poly(ether-carbonate) copolymers that readily dissolve in CO2 at low pressures. Even though non-fluorous polymers are generally assumed to be CO2-phobic, we expect that our design principles can be used to create a wide range of non-fluorous CO2-philes from low-cost raw materials, thus rendering a variety of CO2-based processes economically favourable, particularly in cases where recycling of CO2-philes is difficult.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Addition of only one Lewis base group (carbonyl) to a polyether can significantly lower miscibility pressures in CO2.
Figure 2: Structure of the CO2-philic poly(ether-carbonate) copolymers.
Figure 3: Miscibility of different CO2-philes in CO2.
Figure 4: Triblock surfactants generated from polyethylene glycol, cyclohexene oxide (CHO), and carbon dioxide are soluble in CO2 at low pressures.

Similar content being viewed by others

References

  1. Eckert, C. A., Knutson, B. L. & Debenedetti, P. G. Supercritical fluids as solvents for chemical and materials processing. Nature 373, 313– 318 (1996).

    Article  Google Scholar 

  2. Consani, K. A. & Smith, R. D. Observation on the solubility of surfactants and related molecules in carbon dioxide at 50 °C. J. Supercrit. Fluids 3, 51–65 (1990),

    Article  CAS  Google Scholar 

  3. O'Shea, K. E., Kirmse, K. M., Fox, M. A. & Johnston, K. P. Polar and hydrogen-bonding interactions in supercritical fluids. Effects on the tautomeric equilibrium of 4-(phenylazo)-1-naphthol. J. Phys. Chem. 95, 7863–7867 ( 1991).

    Article  CAS  Google Scholar 

  4. Johnston, K. P. & Lemert, R. M. in Encyclopedia of Chemical Processing and Design Vol. 56 (ed. McKetta, J. J.) 1–45 (Dekker, New York, 1996 ).

    Google Scholar 

  5. Harrison, K., Goveas, J., Johnston, K. P. & O'Rear, E. A. Water-in-carbon dioxide microemulsions with a fluorocarbon-hydrocarbon hybrid surfactant. Langmuir 10, 3536– 3541 (1994).

    Article  CAS  Google Scholar 

  6. DeSimone, J. M., Guan, Z. & Elsbernd, C. S. Synthesis of fluoropolymers in supercritical carbon dioxide. Science 267, 945– 947 (1992).

    Article  ADS  Google Scholar 

  7. Hsiao, Y. L., Maury, E. E., DeSimone, J. M., Mawson, S. M. & Johnston, K. P. Dispersion polymerization of methyl-methacrylate stabilized with poly(1,1-dihydroperfluorooctyl acrylate) in supercritical carbon dioxide. Macromolecules 28, 8159–8166 (1995).

    Article  ADS  CAS  Google Scholar 

  8. Ghenciu, E. G., Russell, A. J., Beckman, E. J., Steele, L. & Becker, N. T. Solubilization of subtilisin in CO2 using fluoroether-functional amphiphiles. Biotech. Bioeng. 58, 572–580 ( 1998).

    Article  CAS  Google Scholar 

  9. Johnston, K. P. et al.Water in carbon dioxide microemulsions: An environment for hydrophiles including proteins. Science 271, 624–626 (1996).

    Article  ADS  CAS  Google Scholar 

  10. Yazdi, A. V. & Beckman, E. J. Design of highly CO2-soluble chelating agents. 2. Effect of chelate structure and process parameters on extraction efficiency. Ind. Eng. Chem. Res. 36, 2368–2374 (1997).

    Article  CAS  Google Scholar 

  11. Jessop, P. G., Ikariya, T. & Noyori, R. Homogeneous catalysis in supercritical fluids. Chem. Rev. 99, 475–494 ( 1999).

    Article  CAS  Google Scholar 

  12. O'Neill, M. L. et al. Solubility of homopolymers and copolymers in carbon dioxide. Ind. Eng. Chem. Res. 37, 3067– 3079 (1998).

    Article  CAS  Google Scholar 

  13. Rindfleisch, F., DiNoia, T. P. & McHugh, M. A. Solubility of polymers in supercritical CO2 . J. Phys. Chem. 100, 15581– 15587 (1996).

    Article  CAS  Google Scholar 

  14. Meredith, J. C., Johnston, K. P., Seminario, J. M., Kazarian, S. G. & Eckert, C. A. Quantitative equilibrium constants between CO2 and Lewis bases from FTIR spectroscopy. J. Phys. Chem. 100, 10837– 10848 (1996).

    Article  Google Scholar 

  15. Kazarian, S. G., Vincent, M. F., Bright, F. V., Liotta, C. L. & Eckert, C. A. Specific intermolecular interaction of carbon dioxide with polymers. J. Am. Chem. Soc. 118, 1729–1736 (1996).

    Article  CAS  Google Scholar 

  16. Brandrup, J., Immergut, E. H. & Grulke, E. A. (eds) Polymer Handbook 4th edn Ch. VII, 47–68 (Wiley, New York,1999).

    Google Scholar 

  17. Fink, R., Hancu, D., Valentine, R. & Beckman, E. J. Toward the development of “CO2-philic” hydrocarbons. 1. Use of side-chain functionalization to lower the miscibility pressure of polydimethylsiloxanes in CO2. J. Phys. Chem. B 103, 6441–6444 (1999).

    Article  CAS  Google Scholar 

  18. Hoefling, T. A., Enick, R. M. & Beckman, E. J. Microemulsions in near critical and supercritical CO2. J. Phys. Chem. 95, 7127–7129 (1991).

    Article  CAS  Google Scholar 

  19. Li, J. & Beckman, E. J. Affinity extraction into CO 2. 2. Extraction of heavy metals into CO2 low-pH aqueous solutions. Ind. Eng. Chem. Res. 37, 4768 –4773 (1998).

    Article  CAS  Google Scholar 

  20. Triolo, F. et al. Critical micelle density for the self-assembly of block copolymer surfactants in supercritical carbon dioxide. Langmuir 16, 416–421 (2000).

    Article  CAS  Google Scholar 

  21. Hoefling, T. A., Newman, D. A., Enick, R. M. & Beckman, E. J. Effect of structure on the cloud point curves of silicone-based amphiphiles in supercritical carbon dioxide. J. Supercrit. Fluids 6, 165–171 (1993).

    Article  CAS  Google Scholar 

  22. Newman, D. A., Hoefling, T. A., Beitle, R. R., Beckman, E. J. & Enick, R. M. Phase behavior of fluoroether-functional amphiphiles in supercritical carbon dioxide. J. Supercrit. Fluids 6, 205–210 ( 1993).

    Article  CAS  Google Scholar 

  23. Lepilleur, C. & Beckman, E. J. Dispersion polymerization of methyl methacrylate in CO2. Macromolecules 30, 745–750 (1997).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank the US DOE, National Petroleum Technology Office, for their support of our CO2 enhanced oil recovery research, and the US DOE, National Energy Technology Laboratory, for their support of our CO2 well fracturing research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric J. Beckman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarbu, T., Styranec, T. & Beckman, E. Non-fluorous polymers with very high solubility in supercritical CO2 down to low pressures. Nature 405, 165–168 (2000). https://doi.org/10.1038/35012040

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35012040

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing