Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Cosmic γ-ray background from structure formation in the intergalactic medium

Abstract

The Universe is filled with a diffuse background of γ-ray radiation1, the origin of which remains one of the unsolved puzzles of cosmology. Less than one-quarter of the γ-ray flux can be attributed to unresolved discrete sources2,3, such as active galactic nuclei; the remainder appears to constitute a truly diffuse background. Here we show that the shock waves induced by gravity in the gas of the intergalactic medium, during the formation of large-scale structures like filaments and sheets of galaxies, produce a population of highly relativistic electrons. These electrons scatter a small fraction of the cosmic microwave background photons in the local Universe up to γ-ray energies, thereby providing the γ-ray background. The predicted diffuse flux agrees with the observed background across more than four orders of magnitude in photon energy, and the model predicts that the γ-ray background, though generated locally, is isotropic to better than five per cent on angular scales larger than a degree. Moreover, the agreement between the predicted and observed background fluxes implies a mean cosmological density of baryons that is consistent with Big Bang nucleosynthesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Spectrum of the unresolved γ-ray background.

Similar content being viewed by others

References

  1. Sreekumar, P. et al. EGRET observations of the extragalactic gamma-ray emission. Astrophys. J. 494, 523–534 (1998).

    Article  ADS  Google Scholar 

  2. Chiang, J. & Mukherjee, R. The luminosity function of the EGRET gamma-ray blazars. Astrophys. J. 496, 752–760 (1998).

    Article  ADS  Google Scholar 

  3. Mukherjee, R. & Chiang, J. EGRET γ-ray blazars: luminosity function and contribution to the extragalactic γ-ray background. Astropart. Phys. 11, 213–215 (1999).

    Article  ADS  Google Scholar 

  4. Cen, R. & Ostriker, J. P. Where are the baryons? Astrophys. J. 514, 1–6 (1999).

    Article  ADS  CAS  Google Scholar 

  5. Metzler, C. A. & Evrard, A. E. A simulation of the intracluster medium with feedback from cluster galaxies. Astrophys. J. 437, 564–583 (1994).

    Article  ADS  Google Scholar 

  6. Nevalainen, J., Markevitch, M. & Forman, W. R. The cluster M-T relation from temperature profiles observed with ASCA and ROSAT. Astrophys. J. (in the press); also as preprint astro-ph/9911369 at 〈http://xxx.lanl.gov〉 (1999; cited 18 Nov. 1999).

  7. Loewenstein, M. Heating of intergalactic gas and cluster scaling relations. Astrophys. J. (in the press); also as preprint astro-ph/9910276 at 〈http://xxx.lanl.gov〉 (1999; cited 14 Oct. 1999).

  8. Blandford, R. & Eichler, D. Particle acceleration at astrophysical shocks—a theory of cosmic-ray origin. Phys. Rep. 154, 1–75 (1987).

    Article  ADS  CAS  Google Scholar 

  9. Bell, A. R. The acceleration of cosmic rays in shock fronts. II. Mon. Not. R. Astron. Soc. 182, 147–156 (1978).

    Article  ADS  CAS  Google Scholar 

  10. Blandford, R. D. & Ostriker, J. P. Particle acceleration by astrophysical shocks. Astrophys. J. 221, L29–L32 (1978).

    Article  ADS  Google Scholar 

  11. Koyama, K. et al. Evidence for shock acceleration of high-energy electrons in the supernova remnant SN1006. Nature 378, 255–258 (1995).

    Article  ADS  CAS  Google Scholar 

  12. Koyama, K. et al. Discovery of non-thermal x-rays from the northwest shell of the new SNR RX J1713.7-3946: The second SN 1006? Publ. Astron. Soc. Jpn 49, L7–L11 (1997).

    Article  ADS  Google Scholar 

  13. Tanimori, T. et al. Discovery of TeV gamma rays from SN 1006: further evidence for the supernova remnant origin of cosmic rays. Astrophys. J. 497, L25–L28 (1998).

    Article  ADS  CAS  Google Scholar 

  14. Muraishi, H. et al. Evidence for TeV gamma-ray emission from the shell type SNR RXJ1713.7-3946. Astron. Astrophys. (in the press); also as preprint astro-ph/0001047 at 〈http://xxx.lanl.gov〉 (2000; cited 5 Jan. 2000).

  15. Kronberg, P. Extragalactic magnetic fields. Rep. Prog. Phys. 57, 325–382 (1994).

    Article  ADS  CAS  Google Scholar 

  16. Fusco-Femiano, R. et al. Hard x-ray radiation in the Coma cluster spectrum. Astrophys. J. 513, L21–L24 (1999).

    Article  ADS  Google Scholar 

  17. Rephaeli, Y., Gruber, D. & Blanco, P. Rossi X-Ray Timing Explorer observations of the Coma cluster. Astrophys. J. 511, L21–L24 (1999).

    Article  ADS  Google Scholar 

  18. Kim, K. T., Kronberg, P. P., Giovannini, G. & Venturi, T. Discovery of intergalactic radio emission in the Coma-A1367 supercluster. Nature 341, 720–723 (1989).

    Article  ADS  Google Scholar 

  19. Felten, J. E. & Morrison, P. Omnidirectional inverse Compton and synchrotron radiation from cosmic distribution of fast electrons and thermal photons. Astrophys. J. 146, 686–708 (1966).

    Article  ADS  CAS  Google Scholar 

  20. Tytler, D., O'Meara, J. M., Suzuki, N. & Lubin, D. Review of Big Bang nucleosynthesis and primordial abundances. Phys. Scripta (in the press); also as preprint astro-ph/0001318 at 〈http://xxx.lanl.gov〉 (2000; cited 18 Jan. 2000).

  21. Fukugita, M., Hogan, C. J. & Peebles, P. J. E. The cosmic baryon budget. Astrophys. J. 503, 518–530 (1998).

    Article  ADS  CAS  Google Scholar 

  22. Mushotzky, R. F., Cowie, L. L., Barger, A. J. & Arnaud, K. A. Resolving the extragalactic hard X-ray background. Nature (in the press); also as preprint astro-ph/0002313 at 〈http://xxx.lanl.gov〉 (2000; cited 16 Feb. 2000).

  23. Fabian, A. C. & Barcons, X. The origin of the X-ray background. Annu. Rev. Astron. Astrophys. 30, 429–456 (1992).

    Article  ADS  Google Scholar 

  24. Fixsen, D. J. et al. The cosmic microwave background spectrum from the full COBE FIRAS data set. Astrophys. J. 473, 576–587 (1996).

    Article  ADS  CAS  Google Scholar 

  25. Hasinger, G. et al. The ROSAT deep survey. I. X-ray sources in the Lockman field. Astron. Astrophys. 329, 482–494 (1998).

    ADS  CAS  Google Scholar 

  26. Kaastra, J. S. et al. High and low energy nonthermal x-ray emission from the Abell 2199 cluster of galaxies. Astrophys. J. 519, L119–L122 (1999).

    Article  ADS  Google Scholar 

  27. Deiss, B. M., Reich, W., Lesch, H. & Wielebinsi, R. The large-scale structure of the diffuse radio halo of the Coma cluster at 1.4GHz. Astron. Astrophys. 321, 55–63 (1997).

    ADS  Google Scholar 

  28. Primack, J. R., Bullock, J. S., Somerville, R. S. & McMinn, D. Probing galaxy formation with TeV gamma ray absorption. Astropart. Phys. 11, 93–102 (1999).

    Article  ADS  Google Scholar 

  29. Konopelko, A. K., Kirk, J. G., Stecker, F. W. & Mastichiadis, A. Evidence for intergalactic absorption in the TeV gamma-ray spectrum of Markarian 501. Astrophys. J. 518, L13–L15 (1999).

    Article  ADS  Google Scholar 

  30. Coppi, P. S. & Aharonian, F. A. Constraints on the very high energy emissivity of the universe from the diffuse GeV gamma-ray background. Astrophys. J. 487, L9–L12 (1997).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Israel-US BSF and by NSF. A.L. thanks the Weizmann Institute for hospitality during the work. E.W. is the incumbent of the Beracha foundation career development chair.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abraham Loeb.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loeb, A., Waxman, E. Cosmic γ-ray background from structure formation in the intergalactic medium. Nature 405, 156–158 (2000). https://doi.org/10.1038/35012018

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35012018

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing