Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Detection of weak gravitational lensing distortions of distant galaxies by cosmic dark matter at large scales

Abstract

Most of the matter in the Universe is not luminous, and can be observed only through its gravitational influence on the appearance of luminous matter. Weak gravitational lensing is a technique that uses the distortions of the images of distant galaxies as a tracer of dark matter: such distortions are induced as the light passes through large-scale distributions of dark matter in the foreground. The patterns of the induced distortions reflect the density of mass along the line of sight and its distribution, and the resulting ‘cosmic shear’ can be used to distinguish between alternative cosmologies. But previous attempts to measure this effect have been inconclusive. Here we report the detection of cosmic shear on angular scales of up to half a degree using 145,000 galaxies and along three separate lines of sight. We find that the dark matter is distributed in a manner consistent with either an open universe, or a flat universe that is dominated by a cosmological constant. Our results are inconsistent with the standard cold-dark-matter model.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: The distorted universe.
Figure 2: Making stars round.
Figure 3: Lens-induced galaxy orientation correlations.
Figure 4: Detection of ellipticity correlations.
Figure 5: Comparison of ellipticity correlations with predictions.

References

  1. Page, L. & Wilkinson, D. T. The cosmic microwave background. Rev. Mod. Phys. 71, 173–179 (1999).

    Article  Google Scholar 

  2. Tyson, J. A., Valdes, F. & Wenk, R. Detection of systematic gravitational lens galaxy image alignments: mapping dark matter in galaxy clusters. Astrophys. J. 349, L1–L4 ( 1990).

    ADS  Article  Google Scholar 

  3. Fahlman, G., Kaiser, N., Squires, G. & Woods, D. Dark matter in MS1224 from distortion of background galaxies. Astrophys. J. 437 56–62 (1994).

    ADS  Article  Google Scholar 

  4. Squires, G., Kaiser, N., Fahlman, G., Babul, A. & Woods, D. A weak gravitational lensing analysis of Abel 2390. Astrohys. J. 469, 73–77 (1996).

    ADS  Article  Google Scholar 

  5. Clowe, D., Luppino, G. A., Kaiser, N., Henry, J. P. & Gioia, I. M. Weak lensing by two z 0.8 clusters of galaxies. Astrophys. J. 497 61–64 (1998).

    ADS  Article  Google Scholar 

  6. Hoekstra, H., Franx, M., Kuijken, K. & Squires, G. Weak lensing analysis of CL 1358+62 using hubble space telescope observations. Astrophys. J. 504, 636–660 ( 1998).

    ADS  Article  Google Scholar 

  7. Mellier, Y. Probing the universe with weak lensing. Annu. Rev. Astron. Astrophys. 37, 127–189 ( 1999).

    ADS  Article  Google Scholar 

  8. Gunn, J. E. A fundamental limitation on the accuracy of angular measurement in observational cosmology. Astrophys. J. 147, 61– 72 (1967).

    ADS  Article  Google Scholar 

  9. Dyer, C. & Roeder, R. Observations in locally inhomogeneous cosmological models. Astrophys. J. 189, 167–175 (1974).

    ADS  Article  Google Scholar 

  10. Miralda-Escudé, J. The correlation function of galaxy ellipticities produced by gravitational lensing. Astrophys. J. 380, 1– 8 (1991).

    ADS  Article  Google Scholar 

  11. Blandford, R., Saust, A., Brainerd, T. & Villumsen, J. The distortion of distant galaxy images by large scale structure. Mon. Not. R. Astron. Soc. 251, 600–627 (1991).

    ADS  Article  Google Scholar 

  12. Kaiser, N. Weak gravitational lensing of distant galaxies. Astrophys. J. 388, 272–286 (1992).

    ADS  Article  Google Scholar 

  13. Villumsen, J. Weak lensing by large-scale structure in open, flat and closed universes. Mon. Not. R. Astron. Soc. 281, 369– 383 (1996).

    ADS  Article  Google Scholar 

  14. Jain, B. & Seljak, U. Cosmological model predictions for weak lensing. Astrophys. J. 484, 560– 573 (1997).

    ADS  Article  Google Scholar 

  15. Kaiser, N. Weak lensing and cosmology. Astrophys. J. 498, 26–42 (1998).

    ADS  Article  Google Scholar 

  16. Kristian, J. On the cosmological distortion effect. Astrophys. J. 147, 864–867 (1967).

    ADS  Article  Google Scholar 

  17. Valdes, F., Tyson, J. A. & Jarvis, J. F. Alignment of faint galaxy images: cosmological distortion and rotation. Astrophys. J. 271, 431– 441 (1983).

    ADS  Article  Google Scholar 

  18. Mould, J. et al. A search for weak distortions of distant galaxy images by large-scale structure. Mon. Not. R. Astron. Soc. 271, 31–38 (1994).

    ADS  Article  Google Scholar 

  19. Schneider, P. et al. Detection of shear due to weak lensing by large-scale structure. Astron. Astrophys. 333, 767– 778 (1998).

    ADS  Google Scholar 

  20. Wittman, D. et al. Big SPIE throughput camera: the first year. Proc. SPIE 3355, 626–634 ( 1998).

    ADS  Article  Google Scholar 

  21. Castleman, K. R. Digital Image Processing 214 (Prentice Hall, Englewood Cliffs, New Jersey, 1979).

    Google Scholar 

  22. Fischer, P. & Tyson, J. A. The mass distribution of the most luminous x-ray cluster RXJ1347.5-1145 from gravitational lensing. Astron. J. 114, 14–24 ( 1997).

    ADS  Article  Google Scholar 

  23. Gullixson, C. A., Boeshaar, P. C., Tyson, J. A. & Seitzer, P. The B j RI photometric system. Astrophys. J. Suppl. Ser. 99, 281–293 (1995).

    ADS  Article  Google Scholar 

  24. Bertin, E. & Arnouts, S. Sextractor: software for source extraction. Astron. Astrophys. Supp. 117, 393–404 (1996).

    ADS  Article  Google Scholar 

  25. Valdes, F. Resolution classifier. Proc. SPIE 331, 465 –472 (1982).

    ADS  Article  Google Scholar 

  26. Tyson, J. A. in AIP Conf. Proc. Dark Matter (eds Holt, S. & Bennett, C.) 287 –296 (AIP Press, 1995).

    Book  Google Scholar 

  27. Wittman, D. & Tyson, J. A. The shear correlation function out to 20 arcminutes. In Gravitational Lensing: Recent Progress and Future Goals (eds Brainerd, T. G. & Kochanek, C. S.) (ASP Conference Series, Astronomical Society of the Pacific, San Francisco, in the press).

  28. Kruse, G. & Schneider, P. The non-gaussian tail of cosmic shear statistics. Preprint astro-ph/9904192 at 〈http://xxx.lanl.gov〉 ( 1999).

  29. Tran, K. H. et al. The velocity dispersion of MS1054-03: a massive galaxy cluster at high redshift. Astrophys. J. 522, 39– 45 (1999).

    ADS  Article  Google Scholar 

  30. Hu, W. Power spectrum tomography with weak lensing. Astrophys. J. 522, L21–L24 (1999).

    ADS  Article  Google Scholar 

  31. Hamilton, A. J. S., Matthews, A., Kumar, P. & Lu, E. Reconstructing the primordial spectrum of fluctuations of the universe from the observed nonlinear clustering of galaxies. Astrophys. J. 374, L1–L4 (1991).

    ADS  Article  Google Scholar 

  32. Peacock, J. A. & Dodds, S. J. Non-linear evolution of cosmological power spectra. Mon. Not. R. Astron. Soc. 280, L19–L26 (1996).

    ADS  Article  Google Scholar 

  33. Ostriker, J. P. & Steinhardt, P. J. The observational case for a low density universe with a cosmological constant. Nature 377, 600–602 ( 1995).

    ADS  CAS  Article  Google Scholar 

  34. Bahcall, N. A., Ostriker, J. P., Perlmutter, S. & Steinhardt, P. J. The cosmic triangle: revealing the state of the universe. Science 284, 1481–1488 ( 1999).

    ADS  CAS  Article  Google Scholar 

  35. Turner, M. S. & Tyson, J. A. Cosmology at the millennium. Rev. Mod. Phys. 71, 145–164 (1999).

    ADS  Article  Google Scholar 

  36. Frenk, C., White, S. D. M., Efstathiou, G. & Davis, M. Galaxy clusters and the amplitude of primordial fluctuations. Astrophys. J. 351, 10–21 (1990).

    ADS  CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank W. Hu and J. Miralda-Escudé for help with theoretical predictions of several cosmological models. We also thank S. Gentile for artwork, and the staff of CTIO for their help with the BTC project and for their upgrading and maintenance of the delivered image quality of the Blanco telescope. Cerro Tololo Inter-American Observatory is a division of National Optical Astronomy Observatory (NOAO), which is operated by the Association of Universities for Research in Astronomy, Inc., under cooperative agreement with the NSF. Big Throughput Camera construction was partially supported by the US National Science Foundation.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wittman, D., Tyson, J., Kirkman, D. et al. Detection of weak gravitational lensing distortions of distant galaxies by cosmic dark matter at large scales. Nature 405, 143–148 (2000). https://doi.org/10.1038/35012001

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35012001

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing