Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

A surprising simplicity to protein folding

Abstract

The polypeptide chains that make up proteins have thousands of atoms and hence millions of possible inter-atomic interactions. It might be supposed that the resulting complexity would make prediction of protein structure and protein-folding mechanisms nearly impossible. But the fundamental physics underlying folding may be much simpler than this complexity would lead us to expect: folding rates and mechanisms appear to be largely determined by the topology of the native (folded) state, and new methods have shown great promise in predicting protein-folding mechanisms and the three-dimensional structures of proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Anfinson,C. Principles that govern the folding of protein chains. Science 181, 223–227 (1973).

    Article  ADS  Google Scholar 

  2. Baldwin,R. L. & Rose,G. D. Is protein folding hierarchic? II. Folding intermediates and transition states. Trends Biochem. Sci. 24, 26–33 ( 1999).

    Article  CAS  Google Scholar 

  3. Jackson,S. E. How do small single-domain proteins fold? Fold. Des. 3, R81–91 (1998).

    Article  CAS  Google Scholar 

  4. Fersht,A. Structure and Mechanism in Protein Science: A Guide to Enzyme Catalysis and Protein Folding (Freeman, New York, 1999).

    Google Scholar 

  5. Chan,H. S. & Dill,K. A. Protein folding in the landscape perspective: chevron plots and non- Arrhenius kinetics. Proteins 30, 2–33 (1998 ).

    Article  CAS  Google Scholar 

  6. Bryngelson,J. D., Onuchic,J. N., Socci,N. D. & Wolynes,P. G. Funnels, pathways, and the energy landscape of protein folding: a synthesis. Proteins 21, 167–195 (1995).

    Article  CAS  Google Scholar 

  7. Dobson,C. M. & Karplus,M. The fundamentals of protein folding: bringing together theory and experiment. Curr. Opin. Struct. Biol. 9, 92–101 ( 1999).

    Article  CAS  Google Scholar 

  8. Horwich,A. L. Chaperone rings in protein folding and degradation. Proc. Natl Acad. Sci. USA 96, 11033–11040 (1999).

    Article  CAS  ADS  Google Scholar 

  9. Shakhnovich,E. I. Folding nucleus: specific or multiple? Insights from lattice models and experiments. Fold. Des. 3, R108–111 (1998).

    Article  CAS  Google Scholar 

  10. Pande,V. S., Grosberg,A. Y., Tanaka,T. & Rokhsar,D. Pathways for protein folding: is a new view needed? Curr. Opin. Struct. Biol. 8, 68–79 ( 1998).

    Article  CAS  Google Scholar 

  11. Thirumalai,D. & Klimov,D. K. Fishing for folding nuclei in lattice models and proteins. Fold. Des. 3, R112– 118 (1998).

    Article  CAS  Google Scholar 

  12. Alm,E. & Baker,D. Matching theory and experiment in protein folding. Curr. Opin. Struct. Biol. 9, 189 –196 (1999).

    Article  CAS  Google Scholar 

  13. Riddle,D. S. et al. Functional rapidly folding proteins from simplified amino acid sequences. Nature Struct. Biol. 4, 805–809 (1997).

    Article  CAS  Google Scholar 

  14. Kim,D. E., Gu,H. & Baker,D. The sequences of small proteins are not extensively optimized for rapid folding by natural selection. Proc. Natl Acad. Sci. USA 95, 4982–4986 (1998).

    Article  CAS  ADS  Google Scholar 

  15. Perl,D. et al. Conservation of rapid two-state folding in mesophilic, thermophilic and hyperthermophilic cold shock proteins. Nature Struct. Biol. 5, 229–235 ( 1998).

    Article  CAS  Google Scholar 

  16. Chiti,F. et al. Mutational analysis of acylphosphatase suggests the importance of topology and contact order in protein folding. Nature Struct. Biol. 6, 1005–1009 ( 1999).

    Article  CAS  Google Scholar 

  17. Martinez,J. C. & Serrano,L. The folding transition state between SH3 domains is conformationally restricted and evolutionarily conserved. Nature Struct. Biol. 6, 1010– 1016 (1999).

    Article  CAS  Google Scholar 

  18. Riddle,D. S. et al. Experiment and theory highlight role of native state topology in SH3 folding. Nature Struct. Biol. 6, 1016–1024 (1999).

    Article  CAS  Google Scholar 

  19. Plaxco,K. W., Simons,K. T. & Baker, D. Contact order, transition state placement and the refolding rates of single domain proteins. J. Mol. Biol. 277, 985–994 (1998).

    Article  CAS  Google Scholar 

  20. Shea J. E., Onuchic J. N. & Brooks,C. L. III. Exploring the origins of topological frustration: design of a minimally frustrated model of fragment B of protein A. Proc. Natl Acad. Sci. USA 96, 12512–12517 ( 1999).

    Article  ADS  Google Scholar 

  21. Onuch,J. N., Nymeyer,H., Garcia,A. E., Chaine,J. & Socci,N. D. The energy landscape theory of protein folding: insights into folding mechanism and scenarios. Adv. Protein Chem. 53, 87–152 (2000).

    Article  Google Scholar 

  22. Micheletti,C., Banavar,J. R., Maritan,A. & Seno,F. Protein structures and optimal folding from a geometrical variational principle. Phys. Rev. Lett. 82, 3372–3375 (1999).

    Article  CAS  ADS  Google Scholar 

  23. Abkevich,V., Gutin,A. & Shakhnovich, E. Specific nucleus as the transition state for protein folding: evidence from the lattice model. Biochemistry 33, 10026–10036 (1994).

    Article  CAS  Google Scholar 

  24. Munoz,V. & Eaton,W. A. A simple model for calculating the kinetics of protein folding from three-dimensional structures. Proc. Natl Acad. Sci. USA 96, 11311– 11316 (1999).

    Article  CAS  ADS  Google Scholar 

  25. Galzitskaya,O. V. & Finkelstein,A. V. A theoretical search for folding/unfolding nuclei in three-dimensional protein structures. Proc. Natl Acad. Sci. USA 96, 11299– 11304 (1999).

    Article  CAS  ADS  Google Scholar 

  26. Alm,E. & Baker,D. Prediction of protein-folding mechanisms from free-energy landscapes derived from native structures. Proc. Natl Acad. Sci. USA 96, 11305–11310 (1999).

    Article  CAS  ADS  Google Scholar 

  27. Go,N. Theoretical studies of protein folding. Annu. Rev. Biophys. Bioeng. 12, 183–210 (1983).

    Article  CAS  Google Scholar 

  28. Portman J. J., Takada,S. & Wolynes,P. G. Variational theory for site resolved protein folding free energy surfaces. Phys. Rev. Lett. 81, 5237–5240 (1998).

    Article  ADS  Google Scholar 

  29. Debye,D & Goddard,W. A. First principles prediction of protein-folding rates. J. Mol. Biol. 294, 619–625 (1999).

    Article  Google Scholar 

  30. Li,A. J. & Daggett,V. Identification and characterization of the unfolding transition state of chymotrypsin inhibitor 2 by molecular dynamics simulations. J. Mol. Biol. 257, 412–429 (1996).

    Article  CAS  Google Scholar 

  31. Lazaridis,T. & Karplus,M. ‘New view’ of protein folding reconciled with the old through multiple unfolding simulations. Science 278, 1928–1931 ( 1997).

    Article  CAS  ADS  Google Scholar 

  32. Sheinerman,F. B. & Brooks,C. L. III A molecular dynamics simulation study of segment B1 of protein G. Proteins 29, 193–202 ( 1997).

    Article  CAS  Google Scholar 

  33. Burton,R. E., Myers,J. K. & Oas,T. G. Protein folding dynamics: quantitative comparison between theory and experiment. Biochemistry 37, 5337–5343 (1998).

    Article  CAS  Google Scholar 

  34. Moult,J., Hubbard,T., Fidelis,K. & Pederson,J. T. Critical assessment of methods of protein structure prediction (CASP): round III. Proteins (Suppl.) 3, 2–6 (1999).

    Article  Google Scholar 

  35. Orengo,C. A., Bray,J. E., Hubbard,T. LoConte,L. & Sillitoe, I. Analysis and assessment of ab initio three-dimensional prediction, secondary structure, and contacts prediction. Proteins (Suppl.) 3, 149–170 ( 1999).

    Article  Google Scholar 

  36. Murzin,A. G. Structure classification-based assessment of CASP3 predictions for the fold recognition targets. Proteins (Suppl.) 3, 88–103 (1999).

    Article  Google Scholar 

  37. Villegas,V., Martinez,J. C., Aviles,F. X. & Serrano,L. Structure of the transition state in the folding process of human procarboxypeptidase A2 activation domain. J. Mol. Biol. 283, 1027–1036 (1998).

    Article  CAS  Google Scholar 

  38. Lopez-Hernandez,E. & Serrano,L. Structure of the transition state for folding of the 129 aa protein CheY resembles that of a smaller protein, CI-2. Fold. Des. 1, 43 –55 (1996).

    Article  CAS  Google Scholar 

  39. Simons,K. T., Bonneau,R., Ruczinski,I. & Baker,D. Ab initio protein structure prediction of CASP III targets using ROSETTA. Proteins (Suppl.) 3, 171–176 ( 1999).

    Article  Google Scholar 

  40. Samudrala,R. Xia,Y. Huang,E. & Levitt,M. Ab initio protein structure prediction using a combined hierarchical approach. Proteins (Suppl.) 3, 194–198 ( 1999).

    Article  Google Scholar 

  41. Ortiz,A. R., Kolinski,A., Rotkiewicz,P., Ilkowski,B. & Skolnick,J. Ab initio folding of proteins using restraints derived from evolutionary information. Proteins (Suppl.) 3, 177–185 ( 1999).

    Article  Google Scholar 

  42. Weigelt,J., Brown,S. E., Miles,C. S. & Dixon,N. E. NMR structure of the N-terminal domain of E. coli DnaB helicase: implications for structure rearrangements in the helicase hexamer. Structure 7, 681–690 (1999).

    Article  CAS  Google Scholar 

  43. Slupsky,C. M. et al. Structure of the Ets-1 pointed domain and mitogen-activated protein kinase phosphorylation site. Proc. Natl Acad. Sci. USA 95, 12129–12134 ( 1998).

    Article  CAS  ADS  Google Scholar 

  44. Rhee,S., Martin,R. G., Rosner,J. L. & Davies,D. R. A novel DNA-binding motif in MarA: the first structure for an AraC family transcriptional activator. Proc. Natl Acad. Sci. USA 95, 10413–10418 (1998).

    Article  CAS  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baker, D. A surprising simplicity to protein folding. Nature 405, 39–42 (2000). https://doi.org/10.1038/35011000

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35011000

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing