Letter | Published:

Measurement of the quantum of thermal conductance


The physics of mesoscopic electronic systems has been explored for more than 15 years. Mesoscopic phenomena in transport processes occur when the wavelength or the coherence length of the carriers becomes comparable to, or larger than, the sample dimensions. One striking result in this domain is the quantization of electrical conduction, observed in a quasi-one-dimensional constriction formed between reservoirs of two-dimensional electron gas1,2. The conductance of this system is determined by the number of participating quantum states or ‘channels’ within the constriction; in the ideal case, each spin-degenerate channel contributes a quantized unit of 2e2/h to the electrical conductance. It has been speculated that similar behaviour should be observable for thermal transport3,4 in mesoscopic phonon systems. But experiments attempted in this regime have so far yielded inconclusive results5,6,7,8,9. Here we report the observation of a quantized limiting value for the thermal conductance, Gth, in suspended insulating nanostructures at very low temperatures. The behaviour we observe is consistent with predictions10,11 for phonon transport in a ballistic, one-dimensional channel: at low temperatures, Gth approaches a maximum value of g0 = π2k2BT/3h, the universal quantum of thermal conductance.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    van Wees,B. J. et al. Quantized conductance of point contacts in a two-dimensional electron-gas. Phys. Rev. Lett. 60, 848– 850 (1988).

  2. 2

    Wharam,D. A. et al. One-dimensional transport and the quantization of the ballistic resistance. J. Phys. C 21, L209– L214 (1988).

  3. 3

    Pendry,J. B. Quantum limits to the flow of information and entropy. J. Phys. A 16, 2161–2171 ( 1983).

  4. 4

    Maynard,R. & Akkermans,E. Thermal conductance and giant fluctuations in one-dimensional disordered systems. Phys. Rev. B 32, 5440–5442 (1985).

  5. 5

    Lee,K. L., Ahmed,H., Kelly,M. J. & Wybourne,M. N. Fabrication of ultra-thin freestanding wires. Phys. Rev. Lett. 69, 1427–1430 (1992).

  6. 6

    Seyler,J. & Wyborne,M. N. Acoustic wave-guide modes observed in electrically heated metal wires. Phys. Rev. Lett. 69, 1427–1430 (1992).

  7. 7

    Kwong,Y. K., Lin,K., Isaacson,M. S. & Parpia,J. M. An attempt to observe phonon dimensionality crossover effects in the inelastic-scattering rate of thin freestanding aluminium films. J. Low Temp. Phys. 88, 261–272 (1992).

  8. 8

    Potts,A. et al. Thermal transport in freestanding semiconducting fine wires. Superlatt. Microstruct. 9, 315–318 (1991).

  9. 9

    Hone,J., Whitney,M., Piskoti,C. & Zettl,A. Thermal conductivity of single-walled carbon nanotubes. Phys. Rev. B 59, R2514–R2516 (1999).

  10. 10

    Angelescu,D. E., Cross,M. C. & Roukes, M. L. Heat transport in mesoscopic systems. Superlatt. Microstruct. 23, 673–689 (1998).

  11. 11

    Rego,L. G. C. & Kirczenow,G. Quantized thermal conductance of dielectric quantum wires. Phys. Rev. Lett. 81, 232–235 (1998).

  12. 12

    Blencowe,M. P. Quantum energy flow in mesoscopic dielectric structures. Phys. Rev. B 59, 4992–4998 ( 1999).

  13. 13

    Klitsner,T., VanCleve,J. E., Fischer,J. E. & Pohl,R. O. Phonon radiative heat-transfer and surface scattering. Phys. Rev. B 38, 7576–7594 ( 1988).

  14. 14

    Nishiguchi,N., Ando,Y. & Wybourne,M. N. Acoustic phonon modes of rectangular quantum wires. J. Phys. Cond. Matter 9, 5751– 5764 (1997).

  15. 15

    Rego,L. C. G. & Kirczenow,G. Fractional exclusion statistics and the universal quantum of thermal conductance: A unifying approach. Phys. Rev. B 59, 13080–13086 (1999).

  16. 16

    Krive,I. V. & Mucciolo,E. R. Transport properties of quasiparticles with fractional exclusion statistics. Phys. Rev. B 60, 1429–1432 (1999).

  17. 17

    Caves,C. M. & Drummond,P. D. Quantum limits on bosonic communication rates. Rev. Mod. Phys. 66, 481– 537 (1994).

  18. 18

    Tighe,T. S., Worlock,J. M. & Roukes, M. L. Direct thermal conductance measurements on suspended monocrystalline nanostructures. Appl. Phys. Lett. 70 , 2687–2689 (1997).

  19. 19

    Schwab,K., Henriksen,E. A. & Roukes, M. L. Direct measurement of phonon transport in mesoscopic devices. Appl. Phys. Lett. (submitted).

  20. 20

    Leivo,M. M. & Pekola,J. P. Thermal characteristics of silicon nitride membranes at sub-Kelvin temperatures. Appl. Phys. Lett. 72, 1305–1307 ( 1998).

  21. 21

    Holmes,W., Gildemeister,J. M., Richards, P. L. & Kotsubo,V. Measurements of thermal transport in low stress silicon nitride films. Appl. Phys. Lett. 72, 2250–2252 (1998).

  22. 22

    Roukes,M. L., Freeman,M. R., Germain,R. S., Richardson,R. C. & Ketchen,M. B. Hot-electrons and energy-transport in metals at millikelvin temperatures. Phys. Rev. Lett. 55, 422–425 (1985).

  23. 23

    Roukes,M. L., Germain,R. S., Freeman,M. R. & Richardson,R. C. DC SQUID noise thermometry. Physica 126 B+C, 1177–1178 (1984).

  24. 24

    Roukes,M. L. Hot Electrons and Energy Transport in Metals at mK Temperatures. Doctoral dissertation, Cornell Univ. (1985).

  25. 25

    Ketchen,M. B. et al. Design, fabrication, and performance of integrated miniature SQUID suseptometers. IEEE Trans. Magn. 25, 1212–1215 (1989).

  26. 26

    Martinis,J. M., Devoret,M. H. & Clarke, J. Experimental test for the quantum behavior of a macroscopic degree of freedom: The phase difference across a Josephson junction. Phys. Rev. B 35, 4682–4698 (1986).

  27. 27

    Mohanty,P., Jariwala,E. M. Q. & Webb, R. A. Intrinsic decoherence in mesoscopic systems. Phys. Rev. Lett. 78, 3366–3369 (1997).

  28. 28

    Yacoby,A. & Imry,Y. Adiabatic mode selection and the accuracy of the quantization of the conductance of ballistic point contacts. Europhys. Lett. 11, 663–667 (1990).

  29. 29

    Kander,I., Imry,Y. & Sivan,U. Effects of channel opening and disorder on the conductance of narrow wires. Phys. Rev. B 41, 12941– 12944 (1990).

  30. 30

    Roukes,M. L. Yoctocalorimetry: phonon counting in nanostructures. Physica B 263–264 1–15 ( 1999).

Download references


We thank M. C. Cross, R. Lifshitz, G. Kirczenow, M. Blencowe, N. Wingreen and P. Burke for discussions, suggestions and insights, and N. Bruckner for assistance with silicon nitride growth. We thank M. B. Ketchen and members of the IBM Yorktown superconductivity group for advice, assistance and the d.c. SQUID devices employed in our cryogenic electronics. This work was supported by DARPA MTO/MEMS and NSF/DMR.

Author information

Correspondence to M. L. Roukes.

Rights and permissions

Reprints and Permissions

About this article

Further reading

Figure 1: Suspended mesoscopic device.
Figure 2: Simplified apparatus diagram.
Figure 3: Thermal conductance data.


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.