Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Quantum suppression of superconductivity in ultrathin nanowires

Abstract

It is of fundamental importance to establish whether there is a limit to how thin a superconducting wire can be, while retaining its superconducting character—and if there is a limit, to determine what sets it. This issue may also be of practical importance in defining the limit to miniaturization of superconducting electronic circuits. At high temperatures, the resistance of linear superconductors is caused by excitations called thermally activated phase slips1,2,3,4. Quantum tunnelling of phase slips is another possible source of resistance that is still being debated5,6,7,8. It has been theoretically predicted8 that such quantum phase slips can destroy superconductivity in very narrow wires. Here we report resistance measurements on ultrathin (10 nm) nanowires produced by coating carbon nanotubes with a superconducting Mo–Ge alloy. We find that nanowires can be superconducting or insulating depending on the ratio of their normal-state resistance (RN) to the quantum resistance for Cooper pairs (Rq). If RN < Rq, quantum tunnelling of phase slips is prohibited by strong damping, and so the wires stay superconducting. In contrast, we observe an insulating state for RN > Rq, which we explain in terms of proliferation of quantum phase slips and a corresponding localization of Cooper pairs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fabrication and imaging of nanowire.
Figure 2: Normal-state properties of the nanowires.
Figure 3: Transport properties of superconducting and insulating nanowires.

Similar content being viewed by others

References

  1. Langer,J. S. & Ambegaokar,V. Intrinsic resistive transition in narrow superconducting channels. Phys. Rev. 164, 498–510 (1967).

    Article  ADS  Google Scholar 

  2. McCumber,D. E. & Halperin,B. I. Time scale of intrinsic resistive fluctuations in thin superconducting wires. Phys. Rev. B 1, 1054–1070 (1970).

    Article  ADS  Google Scholar 

  3. Tinkham,M. Introduction to Superconductivity 2nd edn, 288 (McGraw Hill, New York, 1996).

    Google Scholar 

  4. Ivlev,B. I. & Kopnin,N. B. Electric currents and resistive states in thin superconductors. Adv. Phys. 33, 47–114 (1984).

    Article  ADS  Google Scholar 

  5. Van Run,A. J., Romijn,J. & Mooij,J. E. Superconducting phase coherence in very weak aluminium strips. Jpn J. Appl. Phys. 26, 1765– 1766 (1987).

    Article  CAS  Google Scholar 

  6. Giordano,N. Evidence for macroscopic quantum tunneling in one-dimensional superconductors. Phys. Rev. Lett. 61, 2137– 2140 (1988).

    Article  ADS  CAS  Google Scholar 

  7. Duan,J.-M. Quantum decay of one-dimensional supercurrent: role of electromagnetic field. Phys. Rev. Lett. 74, 5128– 5132 (1995).

    Article  ADS  CAS  Google Scholar 

  8. Zaikin,A. D., Golubev,D. S., van Otterlo, A. & Zimanyi,G. T. Quantum phase slips and transport in ultrathin superconducting wires. Phys. Rev. Lett. 78, 1552–1555 (1997).

    Article  ADS  CAS  Google Scholar 

  9. Likharev,K. K. & Zorin,A. B. Theory of the Block-wave oscillations in small Josephson junctions. J. Low Temp. Phys. 59 , 347–382 (1985).

    Article  ADS  Google Scholar 

  10. Averin,D. V. Solid-state qubits under control. Nature 398, 748–749 (1999).

    Article  ADS  CAS  Google Scholar 

  11. Caldeira,A. D. & Leggett,A. J. Influence of dissipation on quantum tunneling in macroscopic systems. Phys. Rev. Lett. 46, 211–214 ( 1981).

    Article  ADS  Google Scholar 

  12. Schön,G. & Zaikin,A. D. Quantum coherent effects, phase transitions, and the dissipative dynamics of ultra small tunnel junctions. Phys. Rep. 198, 237–412 (1990).

    Article  ADS  Google Scholar 

  13. Bulgadaev,S. A. Phase diagram of a dissipative quantum system. JETP Lett. 39, 315–319 (1984).

    ADS  Google Scholar 

  14. Schmid,A. Diffusion and localization in a dissipative quantum system. Phys. Rev. Lett. 51, 1506–1509 (1983).

    Article  ADS  Google Scholar 

  15. Penttila,J. S., Hakonen,P. J., Paalanen,M. A. & Sonin,E. B. “Superconductor-insulator transition” in a single Josephson junction. Phys. Rev. Lett. 82, 1004– 1007 (1999).

    Article  ADS  CAS  Google Scholar 

  16. Zaikin,A. D., Golubev,D. S., van Otterlo, A. & Zimanyi,G. T. Quantum fluctuations and dissipation in thin superconducting wires. Usp. Fiz. Nauk 168, 244–248 (1998).

    Article  Google Scholar 

  17. Bezryadin,A., Dekker,C. & Schmid,G. Electrostatic trapping of single conducting nanoparticles between nanoelectrodes. Appl. Phys. Lett. 71, 1273–1275 (1997).

    Article  ADS  CAS  Google Scholar 

  18. Graybeal,J. M. & Beasley,M. R. Localization and interaction effects in ultrathin amorphous superconducting films. Phys. Rev. B 29, 4167–4169 (1984).

    Article  ADS  CAS  Google Scholar 

  19. Oreg,Y. & Finkelstein,A. M. Suppression of Tc in superconducting amorphous wires. Phys. Rev. Lett. 83, 191–194 (1999).

    Article  ADS  CAS  Google Scholar 

  20. Goldman,A. M. & Marković,N. Superconductor-insulator transition in the two-dimensional limit. Phys. Today 51, 39–44 (1998).

    Article  CAS  Google Scholar 

  21. Mooij,J. E. & Schön,G. Propagating plasma mode in thin superconducting filaments. Phys. Rev. Lett. 55, 114–117 (1985).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank E. Demler, Y. Oreg and D. S. Fisher for discussions about their QPS theory, M.Bockrath, B. I. Halperin, L. Levitov, J. E. Mooij, C. van der Wal, R. M. Westervelt and A.D. Zaikin for discussions about other aspects of the work, and S. Shepard for help with fabrication. This work was supported in part by the NSF and ONR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Bezryadin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bezryadin, A., Lau, C. & Tinkham, M. Quantum suppression of superconductivity in ultrathin nanowires. Nature 404, 971–974 (2000). https://doi.org/10.1038/35010060

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35010060

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing