A flat Universe from high-resolution maps of the cosmic microwave background radiation

Article metrics


The blackbody radiation left over from the Big Bang has been transformed by the expansion of the Universe into the nearly isotropic 2.73 K cosmic microwave background. Tiny inhomogeneities in the early Universe left their imprint on the microwave background in the form of small anisotropies in its temperature. These anisotropies contain information about basic cosmological parameters, particularly the total energy density and curvature of the Universe. Here we report the first images of resolved structure in the microwave background anisotropies over a significant part of the sky. Maps at four frequencies clearly distinguish the microwave background from foreground emission. We compute the angular power spectrum of the microwave background, and find a peak at Legendre multipole lpeak = (197 ± 6), with an amplitude ΔT200 = (69 ± 8) µK. This is consistent with that expected for cold dark matter models in a flat (euclidean) Universe, as favoured by standard inflationary models.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Boomerang sky maps (equatorial coordinates).
Figure 2: Angular power spectrum measured by Boomerang at 150 GHz.
Figure 3: Observational constraints on Ωm and ΩΛ.


  1. 1

    Sachs,R. K. & Wolfe,A. M. Perturbations of a cosmological model and angular variations of the microwave background. Astrophys. J. 147, 73–90 ( 1967).

  2. 2

    Weinberg, S., Gravitation and Cosmology (Wiley & Sons, New York, 1972).

  3. 3

    Hu,W., Sugiyama,N. & Silk,J. The physics of cosmic microwave background anisotropies. Nature 386, 37–43 (1997).

  4. 4

    Bond,J. R., Efstathiou,G. & Tegmark, M. Forecasting cosmic parameter errors from microwave background anisotropy experiments. Mon Not. R. Astron. Soc. 291 , L33–L41 (1997).

  5. 5

    Hinshaw,G. et al. Band power spectra in the COBE-DMR four-year anisotropy map. Astrophys. J. 464, L17– L20 (1996).

  6. 6

    Scott,P. F. et al. Measurement of structure in the cosmic background radiation with the Cambridge cosmic anisotropy telescope. Astrophys. J. 461, L1–L4 (1996).

  7. 7

    Netterfield,C. B. et al. A measurement of the angular power spectrum of the anisotropy in the cosmic microwave background. Astrophys. J. 474 , 47–66 (1997).

  8. 8

    Leitch,E. M. et al. A measurement of anisotropy in the cosmic microwave background on 7-22 arcminute scales. Astrophys. J. (submitted); also as preprint astro-ph/9807312 at 〈http://xxx.lanl.gov〉 ( 1998).

  9. 9

    Wilson,G. W. et al. New CMB power spectrum constraints from MSAMI. Astrophys. J. (submitted); also as preprint astro-ph/9902047 at 〈http://xxx.lanl.gov〉 (1999).

  10. 10

    Baker,J. C. et al. Detection of cosmic microwave background structure in a second field with the cosmic anisotropy telescope. Mon Not. R. Astron. Soc. (submitted); also as preprint astro-ph/9904415 at 〈http://xxx.lanl.gov〉 (1999).

  11. 11

    Peterson,J. B. et al. First results from Viper: detection of small-scale anisotropy at 40 GHZ. Preprint astro-ph/9910503 at 〈http://xxx.lanl.gov〉 (1999).

  12. 12

    Coble,K. et al. Anisotropy in the cosmic microwave background at degree angular scales: Python V results. Astrophys. J. 519, L5–L8 (1999).

  13. 13

    Torbet,E. et al. A measurement of the angular power spectrum of the microwave background made from the high Chilean Andes. Astrophys. J. 521, 79–82 (1999).

  14. 14

    Miller,A. D. et al. A measurement of the angular power spectrum of the CMB from l = 100 to 400. Astrophys. J. (submitted); also as preprint astro-ph/9906421 at 〈http://xxx.lanl.gov〉 (1999 ).

  15. 15

    Mauskopf,P. et al. Measurement of a peak in the CMB power spectrum from the test flight of BOOMERanG. Astrophys. J. (submitted); also as preprint astro-ph/9911444 at 〈http://xxx.lanl.gov〉 (1999 ).

  16. 16

    Melchiorri,A. et al. A measurement of Ω from the North American test flight of BOOMERanG. Astrophys. J. (submitted); also as preprint astro-ph/9911445 at 〈http://xxx.lanl.gov〉 (1999 ).

  17. 17

    de Bernardis,P. et al. Mapping the CMB sky: the BOOMERanG experiment. New Astron. Rev. 43, 289–296 (1999).

  18. 18

    Mauskopf,P. et al. Composite infrared bolometers with Si3N4 micromesh absorbers. Appl. Opt. 36, 765– 771 (1997).

  19. 19

    Bock,J. et al. Silicon nitride micromesh bolometer arrays for SPIRE. Proc. SPIE 3357, 297–304 (1998).

  20. 20

    Masi,S. et al. A self contained 3He refrigerator suitable for long duration balloon experiments. Cryogenics 38, 319–324 (1998).

  21. 21

    Masi,S. et al. A long duration cryostat suitable for balloon borne photometry. Cryogenics 39, 217–224 (1999).

  22. 22

    Schlegel,D. J., Finkbeiner,D. P. & Davis, M. Maps of dust IR emission for use in estimation of reddening and CMBR foregrounds. Astrophys. J. 500, 525–553 (1998).

  23. 23

    Delabrouille,J., Gorski,K. M. & Hivon, E. Circular scans for CMB anisotropy observation and analysis. Mon. Not. R. Astron. Soc. 298, 445– 450 (1998).

  24. 24

    Cheung, L. H. et al. 1.0 millimeter maps and radial density distributions of southern HII/molecular cloud complexes. Astrophys. J. 240, 74– 83 (1980).

  25. 25

    Kogut,A. et al. Dipole anisotropy in the COBE DMR first-year sky maps. Astrophys. J. 419, 1–6 ( 1993).

  26. 26

    Tegmark,M. CMB mapping experiments: a designer's guide. Phys. Rev. D 56, 4514–4529 (1997).

  27. 27

    Bond,J. R., Crittenden,R., Jaffe,A. H. & Knox,L. E. Computing challenges of the cosmic microwave background. Comput. Sci. Eng. 21, 1–21 ( 1999).

  28. 28

    Borrill,J. in Proc. 3K Cosmology EC-TMR Conf. (eds Langlois, D., Ansari, R. & Vittorio, N.) 277 (American Institute of Physics Conf. Proc. Vol. 476, Woodbury, New York, 1999).

  29. 29

    Prunet,S. et al. in Proc. Conf. Energy Density in the Universe (eds Langlois, D., Ansari, R. & Bartlett, J.) (Editiones Frontieres, Paris, 2000).

  30. 30

    Gorski,K. M., Hivon,E. & Wandelt,B. D. in Proc. MPA/ESO Conf. (eds Banday, A. J., Sheth, R. K. & Da Costa, L.) (European Southern Observatory, Garching); see also 〈http://www.tac.dk/healpix/〉.

  31. 31

    Kogut,A. in Microwave Foregrounds (eds de Oliveira Costa, A. & Tegmark, M.) 91–99 (Astron. Soc. Pacif. Conf. Series. Vol 181, San Francisco, 1999).

  32. 32

    Toffolatti,L. et al. Extragalactic source counts and contributions to the anisotropies of the CMB. Mon. Not. R. Astron. Soc. 297, 117–127 (1998).

  33. 33

    Wright,A. E. et al. The Parkes-MIT-NRAO (PMN) surveys II. Source catalog for the southern survey. Astrophys. J. Supp. Ser. 91, 111–308 (1994); see also 〈http://astron.berkeley.edu/wombat/foregrounds/radio.html〉.

  34. 34

    Borrill,J. in Proc. 5th European SGI/Cray MPP Workshop (CINECA, Bologna, 1999); Preprint astro-ph/9911389 at 〈xxx.lanl.gov〉 ( 1999); see also 〈http://cfpa.berkeley.edu/borrill/cmb/madcap.html〉.

  35. 35

    Durrer,R., Kunz,M. & Melchiorri, A. Phys. Rev. D 59, 1– 26 (1999).

  36. 36

    Seljak,U. & Zaldarriaga,M. A line of sight approach to cosmic microwave background anisotropies. Astrophys. J. 437 , 469–477 (1996).

  37. 37

    Lewis,A., Challinor,A. & Lasenby, A. Efficient computation of CMB anisotropies in closed FRW models. Preprint astro-ph/9911177 at 〈http://xxx.lanl.gov〉 (1999).

  38. 38

    Efstathiou,G. & Bond,R. Cosmic confusion: degeneracies among cosmological parameters derived from measurements of microwave background anisotropies. Mon Not. R. Astron. Soc. 304, 75–97 (1998).

  39. 39

    Wright,E. et al. Comments on the statistical analysis of excess variance in the COBE-DMR maps. Astrophys. J. 420, 1– 8 (1994).

  40. 40

    Perlmutter,S. et al. Measurements of and Λ from 42 high-redshift supernovae. Astrophys. J. 517, 565– 586 (1999).

  41. 41

    Schmidt,B. P. et al. The high-Z supernova search: measuring cosmic deceleration and global curvature of the Universe using type Ia supernovae. Astrophys. J. 507, 46–63 (1998).

Download references


The Boomerang experiment was supported by Programma Nazionale di Ricerche in Antartide, Universita' di Roma “La Sapienza”, and Agenzia Spaziale Italiana in Italy, by the NSF and NASA in the USA, and by PPARC in the UK. We thank the staff of the National Scientific Ballooning Facility, and the United States Antarctic Program personnel in McMurdo for their preflight support and an effective LDB flight. DOE/NERSC provided the supercomputing facilities.

Author information

Correspondence to P. de Bernardis.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

de Bernardis, P., Ade, P., Bock, J. et al. A flat Universe from high-resolution maps of the cosmic microwave background radiation. Nature 404, 955–959 (2000) doi:10.1038/35010035

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.