Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Roles of E. coli DNA polymerases IV and V in lesion-targeted and untargeted SOS mutagenesis

Abstract

The expression of the Escherichia coli DNA polymerases pol V (UmuD′2C complex)1,2 and pol IV (DinB)3 increases in response to DNA damage4. The induction of pol V is accompanied by a substantial increase in mutations targeted at DNA template lesions in a process called SOS-induced error-prone repair4. Here we show that the common DNA template lesions, TT (6–4) photoproducts, TT cis–syn photodimers and abasic sites, are efficiently bypassed within 30 seconds by pol V in the presence of activated RecA protein (RecA*), single-stranded binding protein (SSB) and pol III's processivity β,γ-complex. There is no detectable bypass by either pol IV or pol III on this time scale. A mutagenic ‘signature’ for pol V is its incorporation of guanine opposite the 3′-thymine of a TT (6–4) photoproduct, in agreement with mutational spectra. In contrast, pol III and pol IV incorporate adenine almost exclusively. When copying undamaged DNA, pol V exhibits low fidelity with error rates of around 10-3 to 10-4, with pol IV being 5- to 10-fold more accurate. The effects of RecA protein on pol V, and β,γ-complex on pol IV, cause a 15,000- and 3,000-fold increase in DNA synthesis efficiency, respectively. However, both polymerases exhibit low processivity, adding 6 to 8 nucleotides before dissociating. Lesion bypass by pol V does not require β,γ-complex in the presence of non-hydrolysable ATPγS, indicating that an intact RecA filament may be required for translesion synthesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Comparison of translesion synthesis by pol III HE, pol IV and pol V Mut.
Figure 2: Incorporation of A compared with G opposite a TT (6–4) photoproduct.
Figure 3: Analysis of the processivity of pol IV and pol V with or without SSB and β,γ-complex.
Figure 4: Effect of RecA and β,γ-complex on incorporation of correct dAMP at an undamaged template by pol V and pol IV.
Figure 5: Role of β,γ-complex in abasic site bypass by pol V in the presence of ATP or ATP-γS.

Similar content being viewed by others

References

  1. Tang,M. et al. Biochemical basis of SOS mutagenesis in Escherichia coli: reconstitution of in vitro lesion bypass dependent on the UmuD 2′C mutagenic complex and RecA protein. Proc. Natl Acad. Sci. USA 95, 9755–9760 (1998).

    Article  ADS  CAS  Google Scholar 

  2. Tang,M. et al. UmuD′2C is an error-prone DNA polymerase, Escherichia coli pol V. Proc. Natl Acad. Sci. USA 95, 8919–8924 (1999).

    Article  ADS  Google Scholar 

  3. Wagner,J. et al. The dinB gene encodes a novel Escherichia coli DNA polymerase (DNA pol IV). Mol. Cell 40, 281–286 (1999).

    Article  Google Scholar 

  4. Friedberg,E. C., Walker,G. C. & Siede, W. DNA Repair and Mutagenesis 407– 522 (ASM, Washington, 1995).

    Google Scholar 

  5. Kato,T. & Shinoura,Y. Isolation and characterization of mutants of Escherichia coli deficient in induction of mutagenesis by ultraviolet light. Mol. Gen. Genet. 156, 121–131 (1977).

    CAS  PubMed  Google Scholar 

  6. Bonner,C. A., Hays,S., McEntee,K. & Goodman,M. F. DNA polymerase II is encoded by the DNA damage-inducible dinA gene of Escherichia coli. Proc. Natl Acad. Sci. USA 87, 7663–7667 (1990).

    Article  ADS  CAS  Google Scholar 

  7. Brotocorne-Lannoye,A. & Maenhaut-Michel,G. Role of RecA protein in untargeted UV mutagenesis of bacteriophage λ: Evidence for the requirement for the dinB gene. Proc. Natl Acad. Sci. USA 83, 3904–3908 ( 1986).

    Article  ADS  Google Scholar 

  8. Kim,S.-R. et al. Multiple pathways for SOS-induced mutagenesis in Escherichia coli: An overexpression of dinB/dinP results in strongly enhancing mutagenesis in the absence of any exogenous treatment to damage DNA. Proc. Natl Acad. Sci. USA 94, 13792– 13797 (1997).

    Article  ADS  CAS  Google Scholar 

  9. Knippers,R. DNA polymerase II. Nature 228, 1050– 1053 (1970).

    Article  ADS  CAS  Google Scholar 

  10. Rangarajan,S., Woodgate,R. & Goodman, M. F. A phenotype for enigmatic DNA polymerase II: a pivotal role for pol II in replication restart in UV-irradiated Escherichia coli . Proc. Natl Acad. Sci. USA 96, 9224 –9229 (1999).

    Article  ADS  CAS  Google Scholar 

  11. Lindahl,T. DNA repair enzymes. Annu. Rev. Biochem. 51, 61–87 (1982).

    Article  CAS  Google Scholar 

  12. Banerjee,S. K., Christensen,R. B., Lawrence, C. W. & LeClerc,J. E. Frequency and spectrum of mutations produced by a single cis–syn thymine–thymine cyclobutane dimer in a single-stranded vector. Proc. Natl Acad. Sci. USA 85, 8141– 8145 (1988).

    Article  ADS  CAS  Google Scholar 

  13. Lawrence,C. W., Borden,A., Banerjee,S. K. & LeClerc,J. E. Mutation frequency and spectrum resulting from a single abasic site in a single-stranded vector. Nucleic Acids Res. 18, 2153– 2157 (1990).

    Article  CAS  Google Scholar 

  14. LeClerc,J. E., Borden,A. & Lawrence, C. W. The thymine–thymine pyrimidine–pyrimidone(6–4) ultravioletlight photoproduct is highly mutagenic and specifically induces 3′ thymine-to-cytosine transitions in Escherichia coli. Proc. Natl Acad. Sci. USA 88, 9685– 9689 (1991).

    Article  ADS  CAS  Google Scholar 

  15. Rajagopalan,M. et al. Activity of the purified mutagenesis proteins UmuC, UmuD′, and RecA in replicative bypass of an abasic DNA lesions by DNA polymerase III. Proc. Natl Acad. Sci. USA 89, 10777 –10781 (1992).

    Article  ADS  CAS  Google Scholar 

  16. Creighton,S., Bloom,L. B. & Goodman, M. F. in Methods Enzymol. Vol. 262 (ed. Campbell, J. L.) 232–256 (Academic, San Diego, 1995).

    Google Scholar 

  17. Smith,C. A. et al. Mutation spectra of M13 vectors containing site-specific cis–syn, trans–syn-I, (6–4), and dewar pyrimidone photoproducts of thymidylyl-(3′→5′)-thymidine in Escherichia coli under SOS conditions. Biochemistry 35, 4146–4154 (1996).

    Article  CAS  Google Scholar 

  18. Lawrence,C. W., Banerjee,S. K., Borden,A. & LeClerc,J. E. T–T Cyclobutane dimers are misinstructive, rather than non-instructive, mutagenic lesions. Mol. Gen. Genet. 166, 166–168 (1990).

    Google Scholar 

  19. Fijalkowska,I. J., Dunn,R. L. & Schaaper, R. M. Genetic requirements and mutational specificity of the Escherichia coli SOS mutator activity. J. Bacteriol. 179, 7435–7445 ( 1997).

    Article  CAS  Google Scholar 

  20. Bloom,L. B. et al. Fidelity of Escherichia coli DNA polymerase III holoenzyme: The effects of β, γ complex processivity proteins and ε proofreading exonuclease on nucleotide misincorporation efficiencies. J. Biol. Chem. 272, 27919–27930 ( 1997).

    Article  CAS  Google Scholar 

  21. Sommer,S., Boudsocq,F., Devoret,R. & Bailone,A. Specific RecA amino acid changes affect RecA-UmuD′C interaction. Mol. Microbiol. 28, 281–291 ( 1998).

    Article  CAS  Google Scholar 

  22. Menetski,J. P. & Kowalczykowski,S. C. Interaction of RecA protein with single-stranded DNA: Quantitative aspects of binding affinity modulation by nucleotide cofactors. J. Mol. Biol. 181, 281–295 (1985).

    Article  CAS  Google Scholar 

  23. Reuven,N. B., Arad,G., Maor–Shoshani, A. & Livneh,Z. The mutagenic protein UmuC is a DNA polymerase activated by UmuD′, RecA, and SSB and is specialized for translesion replication. J. Biol. Chem. 274, 31763–31766 ( 1999).

    Article  CAS  Google Scholar 

  24. Radman,M. Enzymes of evolutionary change. Nature 401, 866–869 (1999).

    Article  ADS  CAS  Google Scholar 

  25. McDonald,J. P. et al. Novel human and mouse homologs of Saccharomyces cerevisiae DNA polymerase η. Genomics 60, 20–30 (1999).

    Article  CAS  Google Scholar 

  26. Gerlach,V. L. et al. Human and mouse homologs of Escherichia coli DinB (DNA polymerase IV), members of the UmuC/DinB superfamily. Proc. Natl Acad. Sci. USA 96, 11922–11927 (1999).

    Article  ADS  CAS  Google Scholar 

  27. Naktinis,V., Turner,J. & O'Donnell, M. A molecular switch in a replication machine defined by an internal competition for protein rings. Cell 84, 137–145 (1996).

    Article  CAS  Google Scholar 

  28. Jing,Y., Kao,J. F.-L. & Taylor, J.-S. Thermodynamic and base-pairing studies of matched and mismatched DNA dodecamer duplexes containing cis–syn, (6–4) and Dewar photoproducts of TT. Nucleic Acids Res. 26 , 3845–3853 (1998).

    Article  CAS  Google Scholar 

  29. Bambara,R. A., Fay,P. J. & Mallaber, L. M. Methods of analyzing processivity. Methods Enzymol. 262, 270–280 ( 1995).

    Article  CAS  Google Scholar 

  30. Bruck,I., Woodgate,R., McEntee,K. & Goodman,M. F. Purification of a soluble UmuD′C complex from Escherichia coli. Cooperative binding of UmuD′C to single-stranded DNA. J. Biol. Chem. 271, 10767–10774 ( 1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institutes of Health grants to M.F.G., M.O. and J.-S.T.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myron F. Goodman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, M., Pham, P., Shen, X. et al. Roles of E. coli DNA polymerases IV and V in lesion-targeted and untargeted SOS mutagenesis. Nature 404, 1014–1018 (2000). https://doi.org/10.1038/35010020

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35010020

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing