Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Experience-dependent plasticity of dendritic spines in the developing rat barrel cortex in vivo

Abstract

Do changes in neuronal structure underlie cortical plasticity1,2? Here we used time-lapse two-photon microscopy3,4 of pyramidal neurons in layer 2/3 of developing rat barrel cortex5 to image the structural dynamics of dendritic spines and filopodia. We found that these protrusions were highly motile: spines and filopodia appeared, disappeared or changed shape over tens of minutes. To test whether sensory experience drives this motility we trimmed whiskers one to three days before imaging. Sensory deprivation markedly (40%) reduced protrusive motility in deprived regions of the barrel cortex during a critical period around postnatal days (P)11–13, but had no effect in younger (P8–10) or older (P14–16) animals. Unexpectedly, whisker trimming did not change the density, length or shape of spines and filopodia. However, sensory deprivation during the critical period degraded the tuning of layer 2/3 receptive fields. Thus sensory experience drives structural plasticity in dendrites, which may underlie the reorganization of neural circuits.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: High-resolution imaging of barrel cortex neurons infected with SIN–EGFP in vivo.
Figure 2: Motility of dendritic protrusions and their developmental regulation.
Figure 3: Effects of sensory deprivation on the motility of spiny protrusions.
Figure 4: Whisker trimming does not change the structure of spines and filopodia (P11–13).
Figure 5: Electrophysiology of layer 2/3 neurons.

References

  1. 1

    Bailey,C. H. & Kandel,E. R. Structural changes accompanying memory formation. Annu. Rev. Physiol. 55, 397–426 (1993).

    CAS  Article  Google Scholar 

  2. 2

    Buonomano,D. V. & Merzenich,M. M. Cortical plasticity: from synapses to maps. Annu. Rev. Neurosci. 21, 149–186 (1998).

    CAS  Article  Google Scholar 

  3. 3

    Denk,W., Strickler,J. H. & Webb, W. W. Two-photon laser scanning microscopy. Science 248, 73–76 ( 1990).

    ADS  CAS  Article  Google Scholar 

  4. 4

    Denk,W. & Svoboda,K. Photon upmanship: why multiphoton imaging is more than a gimmick. Neuron 18, 351–357 (1997).

    CAS  Article  Google Scholar 

  5. 5

    Woolsey,T. A. & van der Loos,H. The structural organization of layer IV in the somatosensory region (S1) of mouse cerebral cortex. Brain Res. 17, 205–242 ( 1970).

    CAS  Article  Google Scholar 

  6. 6

    Harris,K. M. & Kater,S. B. Dendritic spines: cellular specializations imparting both stability and flexibility to synaptic function. Annu. Rev. Neurosci. 17, 341–371 (1994).

    CAS  Article  Google Scholar 

  7. 7

    Purpura,D. in Advances in Neurology (ed. Kreutzberg, G. W.) 91– 116 (Raven, New York, 1975).

    Google Scholar 

  8. 8

    Fiala,J. C., Feinberg,M., Popov,V. & Harris,K. M. Synaptogenesis via dendritic filopodia in developing hippocampal area CA1. J. Neurosci. 18, 8900–8911 (1998).

    CAS  Google Scholar 

  9. 9

    Micheva,K. D. & Beaulieu,C. Quantitative aspects of synaptogenesis in the rat barrel field cortex with special reference to GABA circuitry. J. Comp. Neurol. 373, 340–354 (1996).

    CAS  Article  Google Scholar 

  10. 10

    Miller,M. & Peters,A. Maturation of rat visual cortex. II. A combined Golgi-electron microscope study of pyramidal neurons. J. Comp. Neurol. 203, 555–573 (1981).

    CAS  Article  Google Scholar 

  11. 11

    Dailey,M. E. & Smith,S. J. The dynamics of dendritic structure in developing hippocampal slices. J. Neurosci. 16, 2983–2994 (1996).

    CAS  Article  Google Scholar 

  12. 12

    Maletic-Savatic,M., Malinow,R. & Svoboda, K. Rapid dendritic morphogenesis in CA1 hippocampal dendrites induced by synaptic activity. Science 283, 1923–1927 (1999).

    ADS  CAS  Article  Google Scholar 

  13. 13

    Ziv,N. E. & Smith,S. J. Evidence for a role of dendritic filopodia in synaptogenesis and spine formation. Neuron 17, 91–102 (1996).

    CAS  Article  Google Scholar 

  14. 14

    Horch,H. W., Kruttgen,A., Portbury,S. D. & Katz,L. C. Destabilization of cortical dendrites and spines by BDNF. Neuron 23, 353–364 ( 1999).

    CAS  Article  Google Scholar 

  15. 15

    Engert,F. & Bonhoeffer,T. Dendritic spine changes associated with hippocampal long-term synaptic plasticity. Nature 399, 66–70 (1999).

    ADS  CAS  Article  Google Scholar 

  16. 16

    Toni,N., Buchs,P. A., Nikonenko,I., Bron,C. R. & Muller,D. LTP promotes formation of multiple spine synapses between a single axon terminal and a dendrite. Nature 402, 421–425 ( 1999).

    ADS  CAS  Article  Google Scholar 

  17. 17

    Diamond,M. E., Huang,W. & Ebner,F. F. Laminar comparison of somatosensory cortical plasticity. Science 265, 1885–1888 (1994).

    ADS  CAS  Article  Google Scholar 

  18. 18

    Fox,K., Glazewski,S., Chen,C. M., Silva,A. & Li,X. Mechanisms underlying experience-dependent potentiation and depression of vibrissae responses in barrel cortex. J. Physiol. (Paris) 90, 263–269 (1996).

    CAS  Article  Google Scholar 

  19. 19

    Malinow,R. in Imaging Living Cells (eds Yuste, R., Lanni, F. & Konnerth, A.) 58.1–58.8 (Cold Spring Harbor Press, Cold Spring Harbor, 1999).

    Google Scholar 

  20. 20

    Svoboda,K., Denk,W., Kleinfeld,D. & Tank,D. W. In vivo dendritic calcium dynamics in neocortical pyramidal neurons. Nature 385, 161–165 ( 1997).

    ADS  CAS  Article  Google Scholar 

  21. 21

    Chapin,J. K. & Lin,C. S. in The Cerebral Cortex of the Rat (eds Kolb, B. & Tees, R. C.) 341–380 (MIT Press, Cambridge, Massachusetts, 1990).

    Google Scholar 

  22. 22

    Welker,W. I. Analysis of sniffing of the albino rat. Behavior 22 , 223–244 (1964).

    Article  Google Scholar 

  23. 23

    Moore,C. I. & Nelson,S. B. Spatio-temporal subthreshold receptive fields in the vibrissa representation of rat primary somatosensory cortex. J. Neurophysiol. 80, 2882– 2892 (1998).

    CAS  Article  Google Scholar 

  24. 24

    Zhu,J. J. & Connors,B. W. Intrinsic firing patterns and whisker-evoked synaptic responses of neurons in the rat barrel cortex. J. Neurophysiol. 81, 1171–1183 (1999).

    CAS  Article  Google Scholar 

  25. 25

    Fischer,M., Kaech,S., Knutti,D. & Matus,A. Rapid actin-based plasticity in dendritic spines. Neuron 20, 847–854 (1998).

    CAS  Article  Google Scholar 

  26. 26

    Winfield,D. A. The postnatal development of synapses in the visual cortex of the cat and the effects of eyelid closure. Brain Res. 206, 166–171 (1981).

    CAS  Article  Google Scholar 

  27. 27

    Vees,A. M., Micheva,K. D., Beaulieu,C. & Descarries,L. Increased number and size of dendritic spines in ipsilateral barrel field cortex following unilateral whisker trimming in postnatal rat. J. Comp. Neurol. 400, 110–124 (1998).

    CAS  Article  Google Scholar 

  28. 28

    Movshon,J. A. & Dursteler,M. R. Effects of brief periods of unilateral eye closure on the kitten's visual system. J. Neurophysiol. 40, 1255–1265 ( 1977).

    CAS  Article  Google Scholar 

  29. 29

    Simons,D. J. & Land,P. W. Early experience of tactile stimulation influences organization of somatic sensory cortex. Nature 326, 694–697 (1987).

    ADS  CAS  Article  Google Scholar 

  30. 30

    Schlaggar,B. L., Fox,K. & O'Leary,D. D. M. Postsynaptic control of plasticity in developing somatosensory cortex. Nature 364, 623– 626 (1993).

    ADS  CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank B. Burbach and E. Nimchinsky for help with experiments, K. Greenwood for help with analysis, Z. Mainen, M. Maravall, E. Ruthazer and B. Sabatini for comments on the manuscript, and the Malinow laboratory for help with viruses. This work was supported by IBRO (BL), HFSP, the Mathers and Pew Foundations (K.S.) and an NIH training grant to SHNY Stony Brook (B.C.).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Karel Svoboda.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lendvai, B., Stern, E., Chen, B. et al. Experience-dependent plasticity of dendritic spines in the developing rat barrel cortex in vivo. Nature 404, 876–881 (2000). https://doi.org/10.1038/35009107

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing