Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Determination of relative growth rates of natural quartz crystals

Abstract

Although the theory describing crystal growth in the geological environment is well established1,2,3, there are few quantitative studies that delimit the absolute time involved in the growth of natural crystals4,5,6. The actual mechanisms responsible for the variation in size and shape of individual crystal faces are, in fact, not well understood. Here we describe a micro-infrared spectroscopic study of a single, gem-quality quartz crystal that allows us to measure the size, shape and relative growth rate of each of the crystal faces that are active throughout its growth history. We demonstrate that the abundances of hydrogen-bearing impurities can serve as ‘speedometers’ to monitor the growth rate of advancing crystal faces. Our technique can be applied to crystals from a variety of geological environments to determine their growth histories. Within the electronics industry, the technique might facilitate the production of defect-free synthetic crystals required for high-quality resonators and, ultimately, might allow determination of the absolute time involved in geological processes such as the crystallization of magmas, fluid flow in metamorphism and the sealing of open cracks in earthquake rupture zones.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Photographs of the Brazilian quartz specimen analysed in this study, showing the specimen before sectioning.
Figure 2: Sector zones are revealed through variations in hydroxyl species concentrations in the natural quartz crystal of Fig. 1.
Figure 3: Infrared absorbance along two representative traverses (indicated in Fig 2a, map A).
Figure 4: Evolution of growth rate in the Brazilian quartz specimen depicted in Figs 1 and 2.

Similar content being viewed by others

References

  1. Kirkpatrick,R. J. Crystal growth from the melt; a review. Am. Mineral. 60, 798–814 (1975).

    CAS  Google Scholar 

  2. Lasaga,A. C. Kinetic Theory in the Earth Sciences (Princeton University Press, Princeton, 1998).

    Book  Google Scholar 

  3. Sunagawa,I. in Geochemistry and Mineral Formation in the Earth Surface (eds Rodriguez, C. R. & Tardy, Y.) 683–691 (Consejo Superior de Investigaciones Científicas, Madrid, 1987)

    Google Scholar 

  4. Vance,D. & O'Nions,R. K. Isotopic chronometry of zoned garnets; growth kinetics and metamorphic histories. Earth Planet. Sci. Lett. 97, 227–240 ( 1990).

    Article  ADS  CAS  Google Scholar 

  5. Christensen,J. N. & DePaolo,D. J. Time scales of large volume silicic magma systems; Sr isotopic systematics of phenocrysts and glass from the Bishop Tuff, Long Valley California. Contrib. Mineral. Petrol. 113, 100–114 (1993).

    Article  ADS  CAS  Google Scholar 

  6. Reid,M. R., Coath,C. D., Harrison,T. M. & McKeegan,K. D. Prolonged residence times for the youngest rhyolites associated with Long Valley Caldera; 230Th 238U ion microprobe dating of young zircons. Earth Planet. Sci. Lett. 150, 27–39 (1997).

    Article  ADS  CAS  Google Scholar 

  7. Frondel,C. The System of Mineralogy Vol. III, Silica Minerals (Wiley, New York, 1962).

    Google Scholar 

  8. Sunagawa,I. in Morphology of Crystals Part B (ed. Sunagawa, I.) 509– 587 (Terra Scientific, Tokyo, 1987).

    Google Scholar 

  9. Ramseyer,K., Baumann,J., Matter,A. & Mullis,J. Cathodoluminescence of alpha quartz. Mineral. Mag. 52, 669– 677 (1988).

    Article  CAS  Google Scholar 

  10. Watt,G. R., Wright,P., Galloway,S. & McLean,C. Cathodoluminescence and trace element zoning in quartz phenocrysts and xenocrysts. Geochim. Cosmochim. Acta 61, 4337– 4348 (1997).

    Article  ADS  CAS  Google Scholar 

  11. Kats,A. Hydrogen in alpha-quartz. Phillips Res. Rep. 17, 133–279 (1962).

    CAS  Google Scholar 

  12. Aines,R. D. & Rossman,G. R. Hydrogen speciation in synthetic quartz. J. Geophys. Res. 89, 4059– 4071 (1984).

    Article  ADS  CAS  Google Scholar 

  13. Nakamoto,K., Margoshes,M. & Rundle, R. E. Stretching frequencies as a function of distances in hydrogen bonds. J. Am. Chem. Soc. 77, 6480–6486 (1955).

    Article  CAS  Google Scholar 

  14. Kronenberg,A. K. Hydrogen speciation and chemical weakening of quartz. Rev. Mineral. 29, 123–176 ( 1994).

    CAS  Google Scholar 

  15. Griggs,D. T. & Blacic,J. D. Quartz: Anomalous weakness of synthetic crystals. Science 147, 292– 295 (1965).

    Article  ADS  CAS  Google Scholar 

  16. Tullis,J. A., Shelton,G. L. & Yund, R. A. Pressure dependences of rock strength: Implications for hydrolytic weakening. Bull. Mineral. 102, 110–114 (1979).

    CAS  Google Scholar 

  17. Mackwell,S. J. & Paterson,M. S. in Point Defects in Minerals (ed. Schock, R. N.) 141–150 (Vol. 31, Geophysics Monograph Series, American Geophysical Union, Washington DC, 1985).

    Google Scholar 

  18. Kronenberg,A. K., Kirby,S. H., Aines,R. D. & Rossman,G. R. Solubility and diffusional uptake of hydrogen in quartz at high water pressures: Implications for hydrolytic weakening. J. Geophys. Res. 91, 12723–12744 (1986).

    Article  ADS  Google Scholar 

  19. Rovetta,M. R., Blacic,J. D., Hervig,R. L. & Holloway,J. R. An experimental study of hydroxyl in quartz using infrared spectroscopy and ion microprobe techniques. J. Geophys. Res. 94, 5840–5850 (1989).

    Article  ADS  CAS  Google Scholar 

  20. Dodd,D. M. & Fraser,D. B. Infrared studies of the variation of H-bonded OH in synthetic alpha-quartz. Am. Mineral. 52, 149–160 (1967).

    CAS  Google Scholar 

  21. Martin,J. J. Estimation of aluminum and growth-defect content in cultured quartz by using infrared absorption. In Proc. 50th Annu. Freq. Control Symp. 126– 130 (Institute of Electrical and Electronics Engineers, Piscataway, New Jersey, 1996).

    Google Scholar 

  22. Dowty,E. Crystal structure and crystal growth: II. Sector zoning in minerals. Am. Mineral. 61, 460–469 (1976).

    CAS  Google Scholar 

  23. Reeder,R. & Paquette,J. Sector zoning in natural and synthetic calcites. Sedim. Geol. 65, 239– 247 (1989).

    Article  ADS  CAS  Google Scholar 

  24. Onasch,C. M. & Vennemann,T. W. Disequilibrium partitioning of oxygen isotopes associated with sector zoning in quartz. Geology 23, 1103–1106 ( 1995).

    Article  ADS  CAS  Google Scholar 

  25. Paterson,M. S. The thermodynamics of water in quartz. Phys. Chem. Miner. 13, 245–255 (1986).

    Article  ADS  CAS  Google Scholar 

  26. Watson,E. B. & Liang,Y. A simple model for sector zoning in slowly grown crystals; implications for growth rate and lattice diffusion, with emphasis on accessory minerals in crustal rocks. Am. Mineral. 80, 1179–1187 ( 1995).

    Article  ADS  CAS  Google Scholar 

  27. Paquette,J. & Reeder,R. Relationship between surface structure, growth mechanism, and trace element incorporation in calcite. Geochim. Cosmochim. Acta 59, 735–749 (1995).

    Article  ADS  CAS  Google Scholar 

  28. Smyth,J. R. β-Mg2SiO4: A potential host for water in the mantle? Am. Mineral. 72, 1051– 1055 (1987).

    CAS  Google Scholar 

  29. Bell,D. R. & Rossman,G. R. Water in Earth's mantle: The role of nominally anhydrous minerals. Science 255, 1391–1397 (1992).

    Article  ADS  CAS  Google Scholar 

  30. Martin,J. J. & Armington,A. F. Effect of growth rate on quartz defects. J. Cryst. Growth 62, 203– 206 (1983).

    Article  ADS  CAS  Google Scholar 

  31. Rossman,G. R. Vibrational spectroscopy of hydrous components. Rev. Mineral. 18, 193–206 (1988).

    CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Ague, E. Bolton and M. Davis for discussions, and E. Faller and S. Turski for providing samples used in this work. This work was supported by the Packard Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phillip D. Ihinger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ihinger, P., Zink, S. Determination of relative growth rates of natural quartz crystals. Nature 404, 865–869 (2000). https://doi.org/10.1038/35009091

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35009091

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing