Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Retinoic acid induces polarizing activity but is unlikely to be a morphogen in the chick limb bud

Abstract

RETINOIC acid is a putative morphogen in limb formation in the chick and other vertebrates1-5. In chick limb formation, it is thought that retinoic acid is released from the zone of polarizing activity (ZPA) and the concentration gradient of retinoic acid formed from the posterior to the anterior provides positional cues for digit formation1-4,6. Implantation of a bead containing retinoic acid at the anterior margin of the limb bud induces a mirror-image symmetrical duplication of the digit pattern similar to that observed when the ZPA is grafted into the anterior margin of the host limb bud7,8. Also, the level of endogenous retinoic acid (25 nM on average) is higher in the posterior one third of the limb bud1,6. We found that when the bead containing either retinoic acid or an analogue but not the ZPA, was implanted in the anterior margin of the chick limb bud, expression of the retinoic acid receptor type-β gene was induced around the bead within 4 h. These results indicate that exogenous retinoic acid is not identical with the ZPA morphogen. As the anterior tissue exposed to retinoic acid has polarizing activity9, we conclude that the primary function of exogenous retinoic acid is to induce polarizing activity in the limb bud.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Eichele, G. Trends Genet. 5, 246–251 (1989).

    Article  CAS  Google Scholar 

  2. Brockes, J. P. Neuron 2, 1285–1294 (1989).

    Article  CAS  Google Scholar 

  3. Wolpert, L. Development 107 (suppl.), 3–12 (1989).

    PubMed  Google Scholar 

  4. Summerbell, D. & Maden, M. Trends. Neurosci. 13, 142–147 (1990).

    Article  CAS  Google Scholar 

  5. Ide, H., Dev. Growth Different. 32, 1–8 (1990).

    Article  Google Scholar 

  6. Thaller, C. & Eichele, G., Nature 327, 625–628 (1987).

    Article  ADS  CAS  Google Scholar 

  7. Tickle, C., Alberts, B. M., Lee, J. & Wolpert, L. Nature 296, 564–565 (1982).

    Article  ADS  CAS  Google Scholar 

  8. Summerbell, D., J. Embryol. exp. Morph. 78, 269–289 (1983).

    CAS  PubMed  Google Scholar 

  9. Summerbell, D. & Harvey, F. Prog. Clin. Biol. Res. 110, 109–118 (1983).

    PubMed  Google Scholar 

  10. Zelent, A., Krust, A., Petkovich, M., Kastner, P. & Chambon, P. Nature 339, 714–717 (1989).

    Article  ADS  CAS  Google Scholar 

  11. de Thé, H., Marchio, A., Tiollais, P. & Dejean, A. Nature 330, 667–670 (1987).

    Article  ADS  Google Scholar 

  12. Hamburger, V. & Hamilton, H. J. Morph. 88, 49–92 (1951).

    Article  CAS  Google Scholar 

  13. de Thé, H., Marchio, A., Tiollais, P. & Dejean, A. EMBO J. 8, 429–433 (1989).

    Article  Google Scholar 

  14. de Thé, H., Vivanco-Ruiz, M., Tiollais, P., Stunnenberg, H. & Dejean, A. Nature 343, 177–180 (1990).

    Article  ADS  Google Scholar 

  15. Sucov, H. M., Murakami, K. K. & Evans, R. M. Proc. natn. Acad. Sci. U.S.A. 87, 5392–5396 (1990).

    Article  ADS  CAS  Google Scholar 

  16. Eichele, G. & Thaller, C. J. Cell Biol. 105, 1917–1923 (1987).

    Article  CAS  Google Scholar 

  17. Tickle, C., Lee, J. & Eichele, G. Devl. Biol. 109, 82–95 (1985).

    Article  CAS  Google Scholar 

  18. Thaller, C. & Eichele, G. Nature 345, 815–819 (1990).

    Article  ADS  CAS  Google Scholar 

  19. Noji, S. et al. FEBS Lett. 259, 86–90 (1989).

    Article  CAS  Google Scholar 

  20. Dollé, P. et al. Nature 342, 702–705 (1989).

    Article  ADS  Google Scholar 

  21. Oliver, G., Robertis, E. M., Wolpert, L. & Tickle, C. EMBO J. 9, 3093–3099 (1990).

    Article  CAS  Google Scholar 

  22. Eichele, G., Tickle, C. & Alberts, B. M. Analyt. Biochem. 142, 542–555 (1984).

    Article  CAS  Google Scholar 

  23. Tickle, C. Nature 289, 295–298 (1981).

    Article  ADS  CAS  Google Scholar 

  24. Sanger, F., Nicklen, S., & Coulson, A. R. Proc. natn. Acad. Sci. U.S.A. 74, 5463–5468 (1977).

    Article  ADS  CAS  Google Scholar 

  25. Noji, S. et al. Acta Histochem. Cytochem. 23, 353–366 (1990).

    Article  Google Scholar 

  26. Noji, S., Yamaai, T., Koyama, E., Nohno, T. & Taniguchi, S. FEBS Lett. 257, 93–96 (1989).

    Article  CAS  Google Scholar 

  27. Osumi-Yamashita, N. et al. FEBS Lett. 264, 71–74 (1990).

    Article  CAS  Google Scholar 

  28. Tamura, K., Ohsugi, K. & Ide, H., Cell Dif. Dev. 32, 17–26 (1990).

    Article  CAS  Google Scholar 

  29. Summerbell, D. J. Embryol. exp. Morph. 32, 227–237 (1974).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noji, S., Nohno, T., Koyama, E. et al. Retinoic acid induces polarizing activity but is unlikely to be a morphogen in the chick limb bud. Nature 350, 83–86 (1991). https://doi.org/10.1038/350083a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/350083a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing