Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Restoration by a 35K membrane protein of peroxisome assembly in a peroxisome-deficient mammalian cell mutant

Abstract

PEROXISOMES are among the intracellular organdies of eukaryotic cells that contain specialized sets of enzymes with specific functions1. Little is known of membranous components involved in assembly of the intracellular compartments2-5. We isolated two peroxisome-deficient and mutually complementary, Chinese hamster ovary cell mutants, Z65 and Z246, which closely resembled fibroblasts from patients with autosomal recessive, peroxisome-defective disorders such as Zellweger syndrome1,7. These patients show characteristic dysmorphism, severe hypotonia, psychomotor retardation, and peroxisomal dysfunctions and rarely survive early childhood. Here we report what seems to be the first direct cloning and characterization of a complementary DNA encoding a peroxisomal membrane protein of relative molecular mass 35,000 (Mr 35K) that restores the biogenesis of peroxisomes and complements the defect of peroxisomal functions in the mutant Z65.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Lazarow, P. B. & Moser, H. W. in The Metabolic Basis of Inherited Disease 6th edn (eds Scriver, C. R., Beaudet, A. I., Sly, W. S. & Valle, D.) 1479–1509 (McGraw-Hill, New York, 1989).

    Google Scholar 

  2. Verner, K. & Schatz, G. Science 241, 1307–1313 (1988).

    Article  ADS  CAS  Google Scholar 

  3. Gerace, L. & Burke, B. A. Rev. Cell Biol. 4, 335–374 (1988).

    Article  CAS  Google Scholar 

  4. Gould, S. J., Keller, G.-A. & Subramani, S. J. Cell Biol. 107, 897–905 (1988).

    Article  CAS  Google Scholar 

  5. Miyazawa, S. et al. Molec. cell. Biol. 9, 83–91 (1989).

    Article  CAS  Google Scholar 

  6. Tsukamoto, T., Yokota, S. & Fujiki, Y. J. Cell Biol. 110, 651–660 (1990).

    Article  CAS  Google Scholar 

  7. Brul, S. et al. J. clin. Invest. 81, 1710–1715 (1988).

    Article  CAS  Google Scholar 

  8. Chen, C. & Okayama, H. Molec. cell. Biol. 7, 2745–2752 (1987).

    Article  CAS  Google Scholar 

  9. Zoeller, R. A., Morand, O. H. & Roetz, C. R. H. J. biol. Chem. 263, 11590–11596 (1988).

    CAS  PubMed  Google Scholar 

  10. Breitman, M. L., Tsui, L.-C., Buchwald, M. & Siminovitch, L. Molec. cell. Biol. 2, 966–976 (1982).

    Article  CAS  Google Scholar 

  11. Zoeller, R. A. et al. J. biol. Chem. 264, 21872–21878 (1989).

    CAS  PubMed  Google Scholar 

  12. Miura, S. et al. J. biol. Chem. 259, 6397–6402 (1984).

    CAS  PubMed  Google Scholar 

  13. Fujiki, Y., Fowler, S., Shio, H., Hubbard, A. L. & Lazarow, P. B. J. Cell Biol. 93, 103–110 (1982).

    Article  CAS  Google Scholar 

  14. Fujiki, Y., Hubbard, A. L., Fowler, S. & Lazarow, P. B. J. Cell Biol. 93, 97–102 (1982).

    Article  CAS  Google Scholar 

  15. Bordier, C. J. biol. Chem. 256, 1604–1607 (1981).

    CAS  Google Scholar 

  16. Kyte, J. & Doolittle, R. F. J. mol. Biol. 157, 105–132 (1982).

    Article  CAS  Google Scholar 

  17. Sone, T., Yamaoka, K., Minami, Y. & Tsunoo, H. J. biol. Chem. 262, 5878–5885 (1987).

    CAS  PubMed  Google Scholar 

  18. Evans, R. M. & Hollenberg, S. M. Cell 52, 1–3 (1988).

    Article  CAS  Google Scholar 

  19. Vestweber, D., Brunner, J., Baker, A. & Schatz, G. Nature 341, 205–209 (1989).

    Article  ADS  CAS  Google Scholar 

  20. Söllner, T., Griffiths, G., Pfaller, R., Pfanner, N. & Neupert, W. Cell 59, 1061–1070 (1989).

    Article  Google Scholar 

  21. Erdmann, R., Veenhuis, M., Mertens, D. & Kunau, W.-H. Proc. natn. Acad. Sci., U.S.A. 86, 5419–5423 (1989).

    Article  ADS  CAS  Google Scholar 

  22. Mori, M., Morris, S. M & Cohen, P. P. Proc. natn. Acad. Sci. U.S.A. 76, 3719–3183 (1979).

    Google Scholar 

  23. Aviv, H. & Leder, P. Proc. natn. Acad. Sci. U.S.A. 69, 1408–1412 (1972).

    Article  ADS  CAS  Google Scholar 

  24. Hess, R., Staubli, W. & Riess, W. Nature 208, 856–858 (1965).

    Article  ADS  CAS  Google Scholar 

  25. Fujiki, Y., Rachubinski, R. A. & Lazarow, P. B. Proc. natn. Acad. Sci. U.S.A. 81, 7127–7131 (1984).

    Article  ADS  CAS  Google Scholar 

  26. Lerner, R. A. et al. Proc. natn. Acad. Sci. U.S.A. 78, 3403–3407 (1981).

    Article  ADS  CAS  Google Scholar 

  27. Berthet, J. & de Duve, C. Biochem. J. 50, 174–181 (1951).

    Article  CAS  Google Scholar 

  28. Leighton, F. et al. J. Cell Biol. 37, 482–513 (1968).

    Article  CAS  Google Scholar 

  29. Marshall, M. & Cohen, P. P. J. biol. Chem. 247, 1641–1653 (1972).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsukamoto, T., Miura, S. & Fujiki, Y. Restoration by a 35K membrane protein of peroxisome assembly in a peroxisome-deficient mammalian cell mutant. Nature 350, 77–81 (1991). https://doi.org/10.1038/350077a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/350077a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing