Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Medicinal strategies in the treatment of obesity

Abstract

When prevention fails, medicinal treatment of obesity may become a necessity. Any strategic medicinal development must recognize that obesity is a chronic, stigmatized and costly disease that is increasing in prevalence. Because obesity can rarely be cured, treatment strategies are effective only as long as they are used, and combined therapy may be more effective than monotherapy. For a drug to have significant impact on body weight it must ultimately reduce energy intake, increase energy expenditure, or both. Currently approved drugs for long-term treatment of obesity include sibutramine, which inhibits food intake, and orlistat, which blocks fat digestion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Body-weight regulation can be viewed as a feedback system.
Figure 2

Similar content being viewed by others

References

  1. World Health Organization. Obesity: Preventing and Managing the Global Epidemic. (World Health Organization, Geneva, 1998).

  2. National Heart Lung and Blood Institute. Clinical guidelines on the identification evaluation and treatment of overweight and obesity in adults — the evidence report. Obes. Res. 6 (Suppl. 2), 51S–290S ( 1998).

  3. Allison D. B. et al. Annual deaths attributable to obesity in the United States . J. Am. Med. Assoc. 282, 1530– 1538 (1999).

    Article  CAS  Google Scholar 

  4. Bray, G. A. Drug treatment of obesity. Don't throw out the baby with the bath water. Am. J. Clin. Nutr. 67, 1–2 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Bray, G. A. Current and Contemporary Management of Obesity (Handbooks in Health Care, Newtown, PA, 1998).

    Google Scholar 

  6. Bray, G. A. & Greenway, F. L. A review of current and potential drugs for treatment of obesity. Endocr. Rev. 20, 805–875 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Jequier, E. & Tappy, L. Regulation of body weight in humans . Physiol. Rev. 79, 451– 480 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Rolls, B. J., Shide, D. J., Thorwart, M. L. & Ulbrecht, J. S. Sibutramine reduces food intake in non-dieting women with obesity. Obes. Res. 6, 1–11 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  9. Hansen, D. L. et al. Thermogenic effects of sibutramine in humans. Am. J. Clin. Nutr. 68, 1180–1186 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Seagle, H. M., Gessesen, D. H. & Hill, J. O. Effects of sibutramine on resting metabolic rate and weight loss in overweight women. Obes. Res. 6, 115–121 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Bray, G. A. et al. Sibutramine produces dose-related weight loss. Obes. Res. 7, 189–198 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  12. Apfelbaum, M. et al. Long-term maintenance of weight loss after a very low calorie diet: efficacy and tolerability of sibutramine. Am. J. Med. 106, 179–184 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Guercolini, R. Mode of action of orlistat. Int. J. Obes. Relat. Metab. Disord . 21, S12–S23 ( 1997).

    Google Scholar 

  14. Hauptman, J. B., Jeunet, F. S. & Hartmann, D. Initial studies in humans with the novel gastrointestinal lipase inhibitor Ro 18-0647 (tetrahydrolipstatin). Am. J. Clin. Nutr. 55, 309S–313S ( 1992).

    Article  CAS  PubMed  Google Scholar 

  15. Sjostrom, L. et al. Randomized placebo-controlled trial of orlistat for weight loss and prevention of weight regain in obese patients. European Multicentre Orlistat Study Group. Lancet 352, 167– 172 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Davidson, M. H., Hauptman, J. & DiGirolamo, M. Weight control and risk factor reduction in obese subjects treated for 2 years with orlistat. A randomized controlled trial. J. Am. Med. Assoc. 281, 235–242 (1999).

    Article  CAS  Google Scholar 

  17. Hollander, P. et al. Role of orlistat in the treatment of obese patients with type 2 diabetes. Diabetes Care 21, 1288– 1294 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Hill, J. O. et al. Orlistat, a lipase inhibitor, for weight maintenance after conventional dieting — A 1 year study. Am. J. Clin. Nutr. 9, 1108–1116 ( 1999).

    Article  Google Scholar 

  19. Conavatchel, W. Long-term tolerability profile of orlistat, an intestinal lipase inhibitor . Diabetologia 40, A196 ( 1997).

    Google Scholar 

  20. Astrup, A., Lundsgaard, C., Madsen, J., & Christensen, N. J. Enhanced thermogenic responsiveness during chronic ephedrine treatment in man. Am. J. Clin. Nutr. 42, 83– 94 (1985).

    Article  CAS  PubMed  Google Scholar 

  21. Astrup, A., Breum, L., Toubro, S., Hein, P. & Quaade, F. The effect and safety of an ephedrine/caffeine compound compared to ephedrine, caffeine and placebo in obese subjects on an energy-restricted diet. A double-blind trial. Int. J. Obes. Relat. Metab. Disord. 16, 269–277 ( 1992).

    CAS  PubMed  Google Scholar 

  22. Toubro, S., Astrup, L., Breum, L. & Quaade, F. The acute and chronic effects of ephedrine/caffeine mixtures on energy expenditure and glucose metabolism in humans. Int. J. Obes. Relat. Metab. Disord. 17, S73–S77 (1993).

    PubMed  Google Scholar 

  23. Astrup, A. et al. The effect of ephedrine/caffeine mixture on energy expenditure and body composition in obese women. Metabolism 41, 686–688 (1992).

    Article  CAS  PubMed  Google Scholar 

  24. Zhang, Y. et al. Positional cloning of the mouse obese gene and its human homologue . Nature 372, 425–432 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Tartaglia, L. A. et al. Identification and expression cloning of a leptin receptor OB-R. Cell 83, 1263–1271 (1995).

    Article  CAS  PubMed  Google Scholar 

  26. Chen, H. et al. Evidence that the diabetes gene encodes the leptin receptor: identification of a mutation in the leptin receptor gene in db/db mice. Cell 84, 491–495 ( 1996).

    Article  CAS  PubMed  Google Scholar 

  27. Lee, G. H. et al. Abnormal splicing of the leptin receptor in diabetic mice . Nature 379, 632–635 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Chua, S. C. Jr et al. Phenotypes of mouse diabetes and rat fat due to mutations in the OB (leptin) receptor. Science 271, 994–996 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Huszar, D. et al. Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell 88, 131– 141 (1997).

    Article  CAS  PubMed  Google Scholar 

  30. Smith, G. P. Satiation: From Gut to Brain 291 (Oxford Univ. Press, New York, 1998).

    Book  Google Scholar 

  31. Gutzwiller J. P. et al. Effect of intravenous human gastrin-releasing peptide on food intake in humans. Gastroenterology 106, 1168–1173 (1994).

    Article  CAS  PubMed  Google Scholar 

  32. Flint, A., Raben, A. l., Astrup, A. & Holst, J. J. Glucagon-like peptide I promotes satiety and suppresses energy intake in humans. J. Clin. Invest. 101, 515–520 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Holst, J. J. Glucagon-like peptide-1 (GLP-1) — an intestinal hormone, signaling nutritional abundance, with an unusual therapeutic potential. Trends Endocrinol. Metab. 10, 229–235 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  34. Gutzwiller, J. P. et al. Glucagon-like peptide-1 promotes satiety and reduces food intake in patients with diabetes mellitus type 2. Am. J. Physiol. 276 (5 Pt 2), R1541–R1544 (1999).

    CAS  PubMed  Google Scholar 

  35. Erlanson-Albertsson, C. & York, D. Enterostatin – a peptide regulating fat intake. Obes. Res. 5, 360–372 (1997).

    Article  CAS  PubMed  Google Scholar 

  36. Smeets, M., Geiselman, P., Bray, G. A. & York, D. A. The effect of oral enterostatin on hunger and food intake in human volunteers . FASEB J. 13, A871 ( 1999).

    Google Scholar 

  37. Wetherford, S. C. et al. Intraventricular administration of enterostatin decreases food intake in baboons. Appetite 19, 225 (1992).

    Article  Google Scholar 

  38. Morley, J. E., Flood, J. F., Horowitz, M., Morley, P. M. & Walter, M. J. Modulation of food intake by peripherally administered amylin. Am. J. Physiol. 276 (1 Pt 2), R178–R184 (1994 ).

    Google Scholar 

  39. Nagase, H., Bray, G. A. & York, D. A. Effects of pyruvate and lactate on food intake in rat strains sensitive and resistant to dietary obesity. Physiol. Behav. 59, 555–560 ( 1996).

    Article  CAS  PubMed  Google Scholar 

  40. Scharrer, E. Control of food intake by fatty acid oxidation and ketogenesis. Nutrition 15, 704–714 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  41. Sullivan, A. C., Triscari, J., Hamilton, J. G. & Miller, O. N. Effect of (–)-hydroxycitrate upon the accumulation of lipid in the rat. II. Appetite. Lipids 9, 129– 134 (1974).

    Article  CAS  PubMed  Google Scholar 

  42. Heymsfield, S. B. et al. Garcinia cambogia (hydroxycitric acid) as a potential antiobesity agent: a randomized controlled trial. J. Am. Med. Assoc. 280, 1596–1600 (1998).

    Article  CAS  Google Scholar 

  43. Gietzen, D. W., Erecius, L. F. & Rogers, Q. R. Neurochemical changes after imbalanced diets suggest a brain circuit mediating anorectic responses to amino acid deficiency in rats. J. Nutr. 128, 771– 781 (1998).

    Article  CAS  PubMed  Google Scholar 

  44. Tso, P., Liu, M., & Kalogeris, T. J. The role of apolipoprotein A-IV in food intake regulation . J. Nutr. 8,1503–1506 (1999).

    Article  Google Scholar 

  45. Mantzoros, C. S. The role of leptin in human obesity and disease — a review of current evidence. Ann. Intern. Med. 130, 671– 680 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Cone, R. D. The central melanocortin system and energy homeostasis. Trends Endocrinol. Metab. 10, 211–216 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. Wilson, B. D., Ollmann, M. M. & Barsh, G. S. The role of agouti-related protein in regulating body-weight. Mol. Med. Today 5, 250– 256 (1999).

    Article  CAS  PubMed  Google Scholar 

  48. Kristensen, P. et al. Hypothalamic CART is a new anorectic peptide regulated by leptin. Nature 393, 72– 76 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  49. Heymsfield, S. B. et al. Recombinant leptin for weight loss in obese and lean adults: a randomized, controlled, dose-escalation study. J. Am. Med. Assoc. 282, 1568–1575.

  50. Farooqi, I. S. et al. Effects of recombinant leptin therapy in a child with congenital leptin deficiency. N. Engl. J. Med. 341, 879–884 (1999).

    Article  CAS  PubMed  Google Scholar 

  51. Ogawa, Y. et al. Increased glucose metabolism and insulin sensitivity in transgenic skinny mice overexpressing leptin. Diabetes 48, 1822–1829 (1999).

    Article  CAS  PubMed  Google Scholar 

  52. Bjorbaek, C. et al. Activation of SOCS-3 messenger ribonucleic acid in the hypothalamus by ciliary neurotrophic factor. Endocrinology 140, 2035–2043 (1999).

    Article  CAS  PubMed  Google Scholar 

  53. Zimanyi, I. A., Fathi, Z. & Poindexter, G. S. Central control of feeding behavior by neuropeptide Y. Curr. Pharm. Des. 4, 349– 366 (1998).

    CAS  PubMed  Google Scholar 

  54. Palmiter, R. D. et al. in Pennington Center Nutrition Series: Nutrition, Genetics, and Obesity 269–286 (Louisiana State Univ. Press, Baton Rouge, 1999).

    Google Scholar 

  55. Yaswen, L., Diehl, N., Brennan, M. B. & Hochgeschwender, U. Obesity in the mouse model of pro-opiomelanocortin deficiency responds to peripheral melanocortin. Nature Med. 5, 1066–1070 (1999).

    Article  CAS  PubMed  Google Scholar 

  56. Chambers, J. et al. Melanin-concentrating hormone is the cognate ligand for the orphan G-protein-coupled receptor SLC-1. Nature 400 , 261–269 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  57. Saito, Y. et al. Molecular characterization of the melanin-concentrating-hormone receptor. Nature 400, 265– 269 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  58. Shimada, M. et al. Mice lacking melanin-concentrating hormone are hypophagic and lean. Nature 396, 670– 673 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  59. Lembo, P. M. et al. The receptor for the orexigenic peptide melanin-concentrating hormone is a G-protein-coupled receptor. Nature Cell Biol. 5, 267–271 (1999).

    Article  CAS  Google Scholar 

  60. Barton, C., York, D. A. & Bray, G. A. Opioid receptor subtype control of galinin-induced feeding . Peptides 17, 237–240 (1996).

    Article  CAS  PubMed  Google Scholar 

  61. Rokaeus, A., Jiang, K., Spyrou, G. & Waschek, J. A. Transcriptional control of the galanin gene. Tissue-specific expression and induction by NGF, protein kinase C, and estrogen. Ann. NY Acad. Sci. 863, 1–13 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  62. Sakurai, T. et al. Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 92, 573–585 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  63. Lin, L. et al. The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (Orexin) Receptor 2 gene. Cell 98, 365–376 (1999).

    Article  CAS  PubMed  Google Scholar 

  64. Chemelli, R. M. et al. Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell 98, 437– 451 (1999).

    Article  CAS  PubMed  Google Scholar 

  65. Kalra, S. P. et al. Interacting appetite-regulating pathways in the hypothalamic regulation of body weight. Endocr. Rev. 1, 68–100 (1999).

    Article  Google Scholar 

  66. Karolyi, I. J. et al. Altered anxiety and weight gain in corticotropin-releasing-hormone-binding protein-deficient mice. Proc. Natl Acad. Sci. USA 96 , 11595–11600 (1999).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  67. Vickers, S. P., Clifton, P. G., Dourish, C. T. & Tecott, L. H. Reduced satiating effect of d-fenfluramine in serotonin 5-HT (2C) receptor mutant mice. Psychopharmacology 143, 309 –314 (1999).

    Article  CAS  PubMed  Google Scholar 

  68. Smith, B. K., York, D. A. & Bray, G. A. Activation of hypothalamic serotonin receptors reduced intake of dietary fat and protein but not carbohydrate. Am. J. Physiol. 277, R802–R811 (1999).

    CAS  PubMed  Google Scholar 

  69. Connolly, H. M. et al. Valvular heart disease associated with fenfluramine-phentermine . N. Engl. J. Med. 337, 581– 588 (1997).

    Article  CAS  PubMed  Google Scholar 

  70. Ryan, D. H. et al. Serial echocardiographic and clinical evaluation of valvular regurgitation before, during, and after treatment with fenfluramine or dexfenfluramine and mazindol or phentermine. Obes. Res. 7, 313–322 (1999).

    Article  CAS  PubMed  Google Scholar 

  71. Rothman, R. B., Ayestas, M. A., Dersch, C. M., & Baumann, M. H. Aminorex, fenfluramine, and chlorphentermine are serotonin transporter substrates. Implications for primary pulmonary hypertension. Circulation 100, 869–875 (1999).

    Article  CAS  PubMed  Google Scholar 

  72. Heinonen, P. et al. Identification of a three-amino acid deletion in the alpha2B-adrenergic receptor that is associated with reduced basal metabolic rate in obese subjects . J. Clin. Endocrinol. Metab. 84, 2429– 2433 (1999).

    CAS  PubMed  Google Scholar 

  73. Terry, P., Gilbert, D. B. & Cooper, S. J. Dopamine receptor subtype agonists and feeding behavior . Obes. Res. 3, 515S ( 1995).

    Article  CAS  PubMed  Google Scholar 

  74. Sakata, S., Yoshimatsu, H. & Kurokawa, M. Hypothalamic neuronal histamine: implications of its homeostatic control of energy metabolism. Nutrition 13, 403–411 (1997).

    Article  CAS  PubMed  Google Scholar 

  75. Lovenberg, T. W. et al. Cloning and functional expression of the human histamine H3 receptor. Mol. Pharmacol. 55, 1101– 1107 (1999).

    Article  CAS  PubMed  Google Scholar 

  76. Kurose, Y. & Terashima, Y. Histamine regulates food intake through modulating noradrenaline release in the para-ventricular nucleus. Brain Res. 15, 115–118 ( 1999).

    Article  Google Scholar 

  77. Stahl, A. et al. Identification of the major intestinal fatty acid transport protein . Mol. Cell 4, 299–308 (1999).

    Article  CAS  PubMed  Google Scholar 

  78. Bray, G. A. The Obese Patient (Saunders, Philadelphia, 1976).

    Google Scholar 

  79. Danforth, E. Jr & Himms-Hagen, J. H. Obesity and diabetes and the beta-3 adrenergic receptor. Eur. J. Endocrinol. 136, 362–365 ( 1997).

    Article  CAS  PubMed  Google Scholar 

  80. Klingenberg, M. & Huang, S. G. Structure and function of the uncoupling protein from brown adipose tissue. Biochim. Biophys. Acta 8, 271–296 (1999).

    Article  Google Scholar 

  81. Fleury, C. et al. Uncoupling protein-2: a novel gene linked to obesity and hyperinsulinemia . Nature Genet. 15, 269– 272 (1997).

    Article  CAS  PubMed  Google Scholar 

  82. Gimeno, R. E. et al. Cloning and characterization of an uncoupling protein homolog: a potential molecular mediator of human thermogenesis. Diabetes 46, 900–906 ( 1997).

    Article  CAS  PubMed  Google Scholar 

  83. Vidal-Puig, A., Solanes, G., Grujic, D., Flier, J. S. & Lowell, B. B. UCP3: an uncoupling protein homologue expressed preferentially and abundantly in skeletal muscle and brown adipose tissue. Biochem. Biophys. Res. Commun. 235, 79–82 (1997).

    Article  CAS  PubMed  Google Scholar 

  84. Boss, O. et al. Uncoupling protein-3: a new member of the mitochondrial carrier family with tissue-specific expression. FEBS Lett. 408, 39–42 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  85. Gong, D. W., He, Y., Karas, M. & Reitman, M. Uncoupling protein-3 is a mediator of thermogenesis regulated by thyroid hormone, beta3-adrenergic agonists, and leptin. J. Biol. Chem. 39, 24129–24132 (1997).

    Article  Google Scholar 

  86. Elchebly, M. et al. Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene. Science 283, 1544–1548 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  87. Cases, S. et al. Identification of a gene encoding an acyl CoA: diacylglycerol acyltransferase, a key enzyme in triacyglycerol synthesis. Proc. Natl Acad. Sci. USA 95, 13018–13023 (1998).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  88. Marin, P. et al. Androgen treatment of abdominally obese men. Obes. Res. 1, 245–251 ( 1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  89. Marin, P. et al. The effects of testosterone on body composition and metabolism in middle-aged obese men. Int. J. Obes. Relat. Metab. Disord. 16, 991–997 (1992).

    CAS  PubMed  Google Scholar 

  90. Lovejoy, J. C. et al. Oral anabolic steroid treatment, but not parenteral androgen treatment, decreases abdominal fat in obese, older men. Int. J. Obes. Relat. Metab. Disord. 19, 614– 624 (1995).

    CAS  PubMed  Google Scholar 

  91. Kin, K. R. et al. Low-dose growth hormone treatment with diet restriction accelerates body fat loss, exerts anabolic effect and improves growth hormone secretory dysfunction in obese adults. Hormone Res. 51, 78–84 (1999).

    Article  ADS  Google Scholar 

  92. Bujalska, I. J., Kumar, S., Hewison, M. & Stewart, P. M. Differentiation of adipose stromal cells: the roles of glucocorticoids and 11 beta-hydroxysteroid dehydrogenase. Endocrinology 140, 3188– 3196 (1999).

    Article  CAS  PubMed  Google Scholar 

  93. Greenway, F. L. & Bray, G. A. Topical fat reduction . Obes. Res. 3 (Suppl. 4), 561S –568S (1995).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bray, G., Tartaglia, L. Medicinal strategies in the treatment of obesity. Nature 404, 672–677 (2000). https://doi.org/10.1038/35007544

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35007544

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing