Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

High mobility of proteins in the mammalian cell nucleus


The mammalian cell nucleus contains numerous sub-compartments, which have been implicated in essential processes such as transcription and splicing1,2. The mechanisms by which nuclear compartments are formed and maintained are unclear. More fundamentally, it is not known how proteins move within the cell nucleus. We have measured the kinetic properties of proteins in the nucleus of living cells using photobleaching techniques. Here we show that proteins involved in diverse nuclear processes move rapidly throughout the entire nucleus. Protein movement is independent of energy, which indicates that proteins may use a passive mechanism of movement. Proteins rapidly associate and dissociate with nuclear compartments. Using kinetic modelling, we determined residence times and steady-state fluxes of molecules in two main nuclear compartments. These data show that many nuclear proteins roam the cell nucleus in vivo and that nuclear compartments are the reflection of the steady-state association/dissociation of its ‘residents’ with the nucleoplasmic space. Our observations have conceptual implications for understanding nuclear architecture and how nuclear processes are organized in vivo.

Figure 1: Colocalization of GFP-fusion constructs with endogenous proteins.
Figure 2: FRAP of nucleoplasmic regions.
Figure 3: FRAP of nuclear compartments.
Figure 4: FLIP experiments after bleaching of a nucleoplasmic area.


  1. 1

    Lamond,A. I. & Earnshaw,W. C. Structure and function in the nucleus. Science 280, 547– 553 (1998).

    CAS  Article  Google Scholar 

  2. 2

    Misteli,T. & Spector,D. L. The cellular organization of gene expression. Curr. Opin. Cell Biol. 10, 322 –331 (1998).

    Article  Google Scholar 

  3. 3

    Matera,A. G. Nuclear bodies: multifaceted subdomains of the interchromatin space. Trends Cell Biol. 9, 302–309 (1999).

    CAS  Article  Google Scholar 

  4. 4

    Bustin,M. Regulation of DNA-dependent activities by the functional motifs of the high-mobility-group chromosomal proteins. Mol. Cell. Biol. 19, 5237–5246 (1999).

    CAS  Article  Google Scholar 

  5. 5

    Hock,R., Wilde,F., Scheer,U. & Bustin,M. Dynamic relocation of chromosomal protein HMG-17 in the nucleus is dependent on transcriptional activity. EMBO J. 17, 6992– 7001 (1998).

    CAS  Article  Google Scholar 

  6. 6

    Ge,H. & Manley,J. L. A protein factor, ASF, controls cell specific alternative splicing of SV40 early pre-mRNA in vitro. Cell 62, 24–34 (1990).

    Article  Google Scholar 

  7. 7

    Krainer,A. R., Conway,G. C. & Kozak, D. The essential pre-mRNA splicing factor SF2 influences 5′ splice site selection by activating proximal sites. Cell 62, 35–42 ( 1990).

    CAS  Article  Google Scholar 

  8. 8

    Cáceres,J. F., Misteli,T., Screaton,G., Spector,D. L. & Krainer, A. R. Role of the modular domains of SR-proteins in subnuclear localization and alternative splicing specificity. J. Cell Biol. 138, 225–238 ( 1997).

    Article  Google Scholar 

  9. 9

    Scheer,U. & Hock,R. Structure and function of the nucleolus. Curr. Opin. Cell Biol. 11, 385– 390 (1999).

    CAS  Article  Google Scholar 

  10. 10

    Olson,M. O. J., Dundre,M. & Szebeni,A. The nucleolus: An old factory with unexpected capabilities. Trends. Cell Biol. (in the press).

  11. 11

    Ochs,R. L., Lischwe,M. A., Spohn,W. H. & Busch,H. Fibrillarin: a new protein of the nucleolus identified by autoimmune sera. Biol. Cell 54, 123–133 ( 1985).

    CAS  Article  Google Scholar 

  12. 12

    Misteli,T., Cáceres,J. F. & Spector, D. L. The dynamics of a pre-mRNA splicing factor in living cells. Nature 387, 523– 527 (1997).

    ADS  CAS  Article  Google Scholar 

  13. 13

    White,J. & Stelzer,E. Photobleaching GFP reveals protein dynamics inside live cells. Trends Cell Biol. 9, 61–65 (1999).

    CAS  Article  Google Scholar 

  14. 14

    Seksek,O., Biwersi,J. & Verkman, A. S. Translational diffusion of macromolecule-sized solutes in cytoplasm and nucleus. J. Cell Biol. 138, 131–142 (1997).

    CAS  Article  Google Scholar 

  15. 15

    Yokoe,H. & Meyer,T. Spatial dynamics of GFP-tagged proteins investigated by local fluorescence enhancement. Nature Biotechnol. 14, 1252–1256 ( 1996).

    CAS  Article  Google Scholar 

  16. 16

    Houtsmuller,A. B. et al. Action of DNA repair endonuclease ERCC1/XPF in living cells. Science 284, 958–961 (1999).

    ADS  CAS  Article  Google Scholar 

  17. 17

    Kanda,T., Sullivan,K. F. & Wahl, G. M. Histone–GFP fusion protein enables sensitive analysis of chromosome dynamics in living mammalian cells. Curr. Biol. 26, 377–385 ( 1998).

    Article  Google Scholar 

  18. 18

    Foster,D. M. et al. in Proceedings of the Simulation in Health Science Conference 87–90 (Society for Computer Simulation, San Diego, 1994).

    Google Scholar 

  19. 19

    Bell,B. M., Burke,J. V. & Schumitzky, A. A relative weighting method for estimating parameters and variances in multiple data sets. Computational Statistics and Data Analysis 22, 119–135 (1996).

    MathSciNet  Article  Google Scholar 

  20. 20

    Hanamura,A., Cáceres,J. F., Mayeda, A., Franza,B. A. & Krainer,A. R. Regulated tissue-specific expression of antagonistic pre-mRNA splicing factors. RNA 4, 430–444 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21

    Politz,J. C., Browne,E. S., Wolf,D. E. & Pederson,T. Intranuclear diffusion and hybridization state of oligonucleotides measured by fluorescence correlation spectroscopy in living cells. Proc. Natl Acad. Sci. USA 95, 6043–6048 (1998).

    ADS  CAS  Article  Google Scholar 

  22. 22

    Daneholt,B. Pre-mRNP particles: From gene to nuclear pore. Curr. Biol. 11, R412–R415 (1999).

    Article  Google Scholar 

  23. 23

    Politz,J. C., Tuft,R. A., Pederson,T. & Singer,R. H. Movement of nuclear poly(A) RNA throughout the interchromatin space in living cells. Curr. Biol. 9, 285–291 ( 1999).

    CAS  Article  Google Scholar 

  24. 24

    Singh,O. P., Bjorkroth,B., Masich,S., Wieslander,L. & Daneholt, B. The intranuclear movement of Balbiani ring premessenger ribonucleoprotein particles. Exp. Cell Res. 251, 135–146 (1999).

    CAS  Article  Google Scholar 

  25. 25

    Sleeman,J. E., Platani,M., Kreiv,J. P., Lamond,A. I. Dynamic interactions between splicing snRNPs, coiled bodies and nucleoli revealed using snRNP protein fusions to the green fluorescent protein. Exp. Cell Res. 243, 290–304 (1998).

    CAS  Article  Google Scholar 

  26. 26

    Boudonck,K., Dolan,L. & Shaw,P. J. The movement of coiled bodies visualized in living plant cells by the green fluorescent protein. Mol. Biol. Cell 10, 2297–2307 (1999).

    CAS  Article  Google Scholar 

  27. 27

    Jolly,C., Usson,Y. & Morimoto,R. I. Rapid and reversible relocalization of heat shock factor 1 within seconds to nuclear stress granules. Proc. Natl Acad. Sci. USA 96, 6769–6774 ( 1999).

    ADS  CAS  Article  Google Scholar 

  28. 28

    Misteli,T. & Spector,D. L. Serine/threonine phosphatase 1 modulates the subnuclear distribution of pre-mRNA splicing factors. Mol. Biol. Cell 7, 1559–1572 (1996).

    CAS  Article  Google Scholar 

  29. 29

    Dingwall,C., Black,S. J., Kearsey,S. E., Cox,L. S. & Laskey,R. A. Nucleoplasmin cDNA sequence reveals polyglutamic acid tracts and a cluster of sequences homologous to putative nuclear localization signals. EMBO J. 6, 69–74 (1987).

    CAS  Article  Google Scholar 

  30. 30

    Axelrod,D., Koppel,D. E., Schlessinger, J., Elson,E. & Webb,W. W. Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys. J. 16, 1055–1069 (1976).

    ADS  CAS  Article  Google Scholar 

Download references


We thank M. Dundr, G. Wahl, R. Hock and M. Bustin for providing GFP-fibrillarin, GFP-H2B and GFP-HMG-17 clones, respectively, and M. Bustin for anti HMG-17 antibody. We thank M. Bustin for critical reading of the manuscript.

Author information



Corresponding author

Correspondence to Tom Misteli.

Supplementary Information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Phair, R., Misteli, T. High mobility of proteins in the mammalian cell nucleus. Nature 404, 604–609 (2000).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing