Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A family of candidate taste receptors in human and mouse

Abstract

The gustatory system of mammals can sense four basic taste qualities, bitter, sweet, salty and sour, as well as umami, the taste of glutamate1,2,3,4,5,6. Previous studies suggested that the detection of bitter and sweet tastants by taste receptor cells in the mouth is likely to involve G-protein-coupled receptors2,7,8. Although two putative G-protein-coupled bitter/sweet taste receptors have been identified9, the chemical diversity of bitter and sweet compounds leads one to expect that there is a larger number of different receptors8,10,11. Here we report the identification of a family of candidate taste receptors (the TRBs) that are members of the G-protein-coupled receptor superfamily and that are specifically expressed by taste receptor cells. A cluster of genes encoding human TRBs is located adjacent to a Prp gene locus12, which in mouse is tightly linked to the SOA genetic locus that is involved in detecting the bitter compound sucrose octaacetate13,14,15. Another TRB gene is found on a human contig assigned to chromosome 5p15, the location of a genetic locus (PROP) that controls the detection of the bitter compound 6-n-propyl-2-thiouracil in humans16,17.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Candidate taste receptors encoded by human and mouse TRB genes.
Figure 2: TRB genes are expressed in taste papillae.
Figure 3: TRB genes are expressed in taste receptor cells in taste buds.

Similar content being viewed by others

References

  1. Roper,S. D. The cell biology of vertebrate taste receptors. Annu. Rev. Neurosci. 12, 329–353 ( 1989).

    Article  CAS  Google Scholar 

  2. Lindemann,B. Taste reception. Physiol. Rev. 76, 718– 766 (1996).

    Article  Google Scholar 

  3. Lindemann,B. A taste for umami. Nature Neurosci. 3, 99 –100 (2000).

    Article  CAS  Google Scholar 

  4. Herness,M. S. & Gilbertson,T. A. Cellular mechanisms of taste transduction. Annu. Rev. Physiol. 61, 873 –900 (1999).

    Article  CAS  Google Scholar 

  5. Chaudhari,N. & Roper,S. D. Molecular and physiological evidence for glutamate (umami) taste transduction via a G protein-coupled receptor. Ann. NY Acad. Sci. 855, 398– 406 (1998).

    Article  ADS  CAS  Google Scholar 

  6. Bartoshuk,L. M. & Beauchamp,G. K. Chemical senses. Annu. Rev. Psycho. 45, 419– 449 (1994).

    Article  CAS  Google Scholar 

  7. Kinnamon,S. C. & Margolskee,R. F. Mechanisms of taste transduction. Curr. Opin. Neurobiol. 6, 506– 513 (1996).

    Article  CAS  Google Scholar 

  8. Spielman,A. L., Huque,T., Whitney,G. & Brand,J. G. The diversity of bitter taste signal transduction mechanisms. Soc. Gen. Physiol. Series. 47, 307–324 ( 1992).

    CAS  Google Scholar 

  9. Hoon,M. A. et al. Putative mammalian taste receptors: a class of taste-specific GPCRs with distinct topographic selectivity. Cell 96 , 541–551 (1999).

    Article  CAS  Google Scholar 

  10. Lindemann,B. Receptor seeks ligand: on the way to cloning the molecular receptors for sweet and bitter taste. Nature Med. 5, 381– 382 (1999).

    Article  CAS  Google Scholar 

  11. Smith,D. V. & Margolis,F. L. Taste processing: whetting our appetites. Curr. Biol. 9, 453– 455 (1999).

    Article  Google Scholar 

  12. Azen,E. et al. Clones from the human gene complex coding for salivary proline-rich proteins. Proc. Natl Acad. Sci. USA 81, 5561–5565 (1984).

    Article  ADS  CAS  Google Scholar 

  13. Capeless,C. G., Whitney,G. & Azen,E. A. Chromosome mapping of Soa, a gene influencing gustatory sensitivity to sucrose octaacetate in mice. Behav. Genet. 6, 655–663 (1992).

    Article  Google Scholar 

  14. Lush,I. E., Hornigold,N., King,P. & Stoye,J. P. The genetics of tasting in mice. VII. Glycine revisited, and the chromosomal location of Sac and Soa. Genet. Res. 66, 167– 174 (1995).

    Article  CAS  Google Scholar 

  15. Whitney,G. & Harder,D. B. Genetics of bitter perception in mice. Physiol. Behav. 56, 1141– 1147 (1994).

    Article  CAS  Google Scholar 

  16. Reed,D. R. et al. Localization of a gene for bitter-taste perception to human chromosome 5p15. Am. J. Hum. Genet. 64, 1478–1480 (1999).

    Article  CAS  Google Scholar 

  17. Bartoshuk,L. M., Duffy,V. B. & Miller, I. J. PTC/PROP tasting: anatomy, psychophysics, and sex effects. Physiol. Behav. 56, 1165– 1171 (1994).

    Article  CAS  Google Scholar 

  18. Dulac,C. & Axel,R. A novel family of genes encoding putative pheromone receptors in mammals. Cell 83, 195–206 (1995).

    Article  CAS  Google Scholar 

  19. Rodriguez,I., Feinstein,P. & Mombaerts, P. Variable patterns of axonal projections of sensory neurons in the mouse vomeronasal system. Cell 97, 199–208 (1999).

    Article  CAS  Google Scholar 

  20. Chaudhari,N. et al. The taste of monosodium glutamate: membrane receptors in taste buds. J. Neurosci. 16, 3817– 3826 (1996).

    Article  CAS  Google Scholar 

  21. Chaudhari,N., Landin,A. M. & Roper, S. D. A metabotropic glutamate receptor variant functions as a taste receptor. Nature Neurosci. 3, 113–119 (2000).

    Article  CAS  Google Scholar 

  22. Matsunami,H., Buck,L. B. A multigene family encoding a diverse array of putative pheromone receptors in mammals. Cell 90, 775–784 (1997).

    Article  CAS  Google Scholar 

  23. Herrada,G. & Dulac,C. A novel family of putative pheromone receptors in mammals with a topographically organized and sexually dimorphic distribution. Cell 90, 763– 773 (1997).

    Article  CAS  Google Scholar 

  24. Ryba,N. J. & Tirindelli,R. A new multigene family of putative pheromone receptors. Neuron 19, 371– 379 (1997).

    Article  CAS  Google Scholar 

  25. Buck,L. & Axel,R. A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65, 175–187 ( 1991).

    Article  CAS  Google Scholar 

  26. Wong,G. T., Ruiz-Avila,L. & Margolskee, R. F. Directing gene expression to gustducin-positive taste receptor cells. J. Neurosci. 19, 5802– 5809 (1999).

    Article  CAS  Google Scholar 

  27. McLaughlin,S. K., McKinnon,P. J. & Margolskee, R. F. Gustducin is a taste-cell specific G protein closely related to the transducins. Nature 357, 563–569 (1992).

    Article  ADS  CAS  Google Scholar 

  28. Berghard,A. & Buck,L. B. Sensory transduction in vomeronasal neurons: evidence for Gαo, Gαi2, and adenyl cyclase II as major components of a pheromone signaling cascade. J. Neurosci. 16, 909–918 (1996).

    Article  CAS  Google Scholar 

  29. Roux,K. H. in PCR Primer: A Laboratory Manual (eds Diffenbach, C. W. & Dveksler, G. S.) 53–62 (CSHL Press, Plainview, New York, 1995).

    Google Scholar 

Download references

Acknowledgements

We would like to thank E. Kurosawa-Pelletier and C. Gao for expert technical assistance and K. Fowler for help in preparing the manuscript. This work was supported by the Howard Hughes Medical Institute, grants from the National Institues of Health (to L.B.B.), and fellowship support from the Alice and Joseph Brook Fund (to J.-P. M.). Genbank accession numbers for mouse TRBs are AF24771–AF24775. Human TRB gene sequences are in the NCBI database in contigs NT_001856 (chromosome 12), NT_000146 (chromosome 5) and NT_001612, NT_000322 and NT_002055 (chromosome 7).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsunami, H., Montmayeur, JP. & Buck, L. A family of candidate taste receptors in human and mouse. Nature 404, 601–604 (2000). https://doi.org/10.1038/35007072

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35007072

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing