Rapid and early export of Phaeocystis antarctica blooms in the Ross Sea, Antarctica

Article metrics

Abstract

The Southern Ocean is very important for the potential sequestration of carbon dioxide in the oceans1 and is expected to be vulnerable to changes in carbon export forced by anthropogenic climate warming2. Annual phytoplankton blooms in seasonal ice zones are highly productive and are thought to contribute significantly to pCO2 drawdown in the Southern Ocean. Diatoms are assumed to be the most important phytoplankton class with respect to export production in the Southern Ocean; however, the colonial prymnesiophyte Phaeocystis antarctica regularly forms huge blooms in seasonal ice zones and coastal Antarctic waters3. There is little evidence regarding the fate of carbon produced by P. antarctica in the Southern Ocean, although remineralization in the upper water column has been proposed to be the main pathway in polar waters4,5. Here we present evidence for early and rapid carbon export from P. antarctica blooms to deep water and sediments in the Ross Sea. Carbon sequestration from P. antarctica blooms may influence the carbon cycle in the Southern Ocean, especially if projected climatic changes lead to an alteration in the structure of the phytoplankton community6,7.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Integral values (depth 0–150 m) of chlorophyll a (a), 19′-hexanoyloxyfucoxanthin (19′-hex) (b), carbon export (c) and dimethylsulphide (DMS) (d) measured during the ROAVERRS-96-6 cruise (18 December 1996 to 8 January 1997).
Figure 2: Vertical profiles of P. antarctica cell numbers, chlorophyll a and DMS concentrations, and Fv/Fm near the Ross Ice Shelf (76.1° S, 174° W) on 24 December 1996.
Figure 3

References

  1. 1

    Sarmiento,J. L. & Le Quere,C. Ocean carbon dioxide uptake in a model of century-scale global warming. Science 274, 1346–1350 (1996).

  2. 2

    Sarmiento,J. L., Hughes,T. M. C., Stouffert, R. J. & Manabe,S. Simulated response of the ocean carbon cycle to anthropogenic climate warming. Nature 393, 245–249 (1998).

  3. 3

    El-Sayed,S. Z., Biggs,D. C. & Holm-Hansen, O. Phytoplankton standing crop, primary productivity and near-surface nitrogenous nutrient fields in the Ross Sea, Antarctica. Deep-Sea Res. 30, 871–886 (1993).

  4. 4

    Asper,V. & Smith,W. O. Jr Particle fluxes during austral spring and summer in the southern Ross Sea, Antarctica. J. Geophys. Res. 104, 5345–5359 (1999).

  5. 5

    Wassman,P., Vernet,M., Mitchell,B. G. & Rey,F. Mass sedimentation of Phaeocystis pouchetii in the Barents Sea. Mar. Ecol. Prog. Ser. 66, 183–195 (1990).

  6. 6

    Arrigo,K. R. et al. Phytoplankton community structure and the drawdown of nutrients and CO2 in the Southern Ocean. Science 283 , 365–367.

  7. 7

    Arrigo,K. R. et al. Phytoplankton taxonomic variability in nutrient utilization and primary production in the Ross Sea. J. Geophys. Res. (in the press).

  8. 8

    Matrai, P. A. et al. Light dependence of carbon and sulfur production by polar clones of the genus Phaeocystis. Mar. Biol. 124, 157– 167 (1995).

  9. 9

    DiTullio,G. R. & Smith,W. O. Jr Relationship between dimethylsulfide and phytoplankton pigment concentrations in the Ross Sea, Antarctica. Deep-Sea Res. 42, 873– 892 (1995).

  10. 10

    Passow,U. & Wassman,P. On the trophic fate of Phaeocystis pouchetti (Hariot): I.V. The formation of snow by P. pouchetti. Mar. Ecol. Prog. Ser. 104, 153– 161 (1994).

  11. 11

    Sweeney,C. et al. The carbon budget for the Ross Sea: A model for the Southern Ocean. Deep-Sea Res. (in the press).

  12. 12

    Sedwick,P. N., DiTullio,G. R. & Mackey, D. J. Iron and manganese in the Ross Sea, Antarctica: Seasonal iron limitation in Antarctic shelf waters. J. Geophys. Res. (in the press).

  13. 13

    Carlson,C. A., Ducklow,H. W., Hansell,D. A. & Smith,W. O. Jr Organic carbon partitioning during spring phytoplankton blooms in the Ross Sea polynya and the Sargasso Sea. Limnol. Oceanogr. 43, 375–386 (1998).

  14. 14

    Hansen,F. C. & van Boekel,W. H. M. Grazing pressure of the calanoid copepod Temora longicronis on a Phaeocystis-dominated spring bloom in a Dutch tidal inlet. Mar. Ecol. Prog. Ser. 78, 123–129 (1991).

  15. 15

    Verity,P. G. & Smayda,T. J. Nutritional value of Phaeocystis pouchetii (Prymnesiophyceae) and other phytoplankton for Arcartia spp. (Copepoda): Ingestion, egg production, and growth of nauplii. Mar. Biol. Berlin 100, 161–171 (1989).

  16. 16

    Cantoni,G. L. & Anderson,D. G. Enzymatic cleavage of dimethylpropiothetin by Polysiphonia lanosa. J. Biol. Chem. 222, 171–177 (1956).

  17. 17

    Dacey,J. W. H. & Wakeham,S. G. Oceanic DMS: production during zooplankton grazing on phytoplankton. Science 233, 1314–1316 ( 1986).

  18. 18

    Stefals,J., Gieskes,W. W. C. & Dijkhuizen, L. in Biological and Environmental Chemistry of DMSP and Related Sulfonium Compounds (eds Kiene, R. P., Visscher, P. T., Keller, M. D. & Kirst, G. O.) 305–316 (Plenum, New York, 1996).

  19. 19

    Stefels,J. & van Leeuwe,M. A. Effects of iron and light stress on the biochemical composition of Antarctic Phaeocystis sp. (Prymnesiophyceae). I. Intracellular DMSP concentrations. J. Phycol. 34 , 486–495 (1998).

  20. 20

    Dunbar,R. B., Anderson,J. B., Domack,E. W. & Jacobs,S. S. in Oceanology of the Antarctic Shelf (ed. Jacobs, S. S.) Antarctic Research Series Vol. 43, 291–312 (American Geophysical Union, Washington DC, 1985).

  21. 21

    Accornero,A., Bergamasco,A., Monaco,A. & Tucci,S. in Oceanography of the Ross Sea, Antarctica (eds Spezie, G. & Mauzella, G. M. R.) 177–196 (Springer, Milan, 1999).

  22. 22

    Martin,J. H. Glacial-interglacial CO2 change: The iron hypothesis. Paleoceanography 5, 1–13 (1990).

  23. 23

    Moore,J. K., Abbott,M. R., Rich,J. G. & Nelson,D. H. The Southern Ocean at the last glacial maximum: A strong sink for atmospheric carbon dioxide. Glob. Biogeochem. Cycles (in the press).

  24. 24

    Kumar,N. et al. Increased biological productivity and export production in the glacial Southern Ocean. Nature 378, 675– 680 (1995).

  25. 25

    De La Rocha,C. L., Brzezinski,M. A., DeNiro, M. J. & Shemesh,A. Silicon-isotope composition of diatoms as an indicator of past oceanic change. Nature 395, 680–683 (1998).

  26. 26

    Smith,W. O. Jr & Gordon,L. I. Hyperproductivity of the Ross Sea (Antarctica) polynya during austral spring. Geophys. Res. Lett. 24, 233–236 ( 1997).

  27. 27

    LeGrand,M. et al. Ice-core record of oceanic emissions of dimethylsulfide during the last climate cycle. Nature 350, 144– 146 (1991).

  28. 28

    Martin,J. H. in Primary Productivity and Biogeochemical Cycles in the Sea (eds Falkowski, P. G. & Woodhead, A. D.) 123–128 (Plenum, New York, 1992).

Download references

Acknowledgements

We thank D. Jones, M. Geesey and J. Maucher for technical assistance with DMS/P and HPLC pigment analyses and data reduction. We also thank J. Borkowski and the crew of the RVIB Nathaniel B. Palmer.

Author information

Correspondence to G. R. DiTullio.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

DiTullio, G., Grebmeier, J., Arrigo, K. et al. Rapid and early export of Phaeocystis antarctica blooms in the Ross Sea, Antarctica. Nature 404, 595–598 (2000) doi:10.1038/35007061

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.