Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Interception of comet Hyakutake's ion tail at a distance of 500 million kilometres

Abstract

Remote sensing observations1,2,3,4,5 and the direct sampling of material6,7,8 from a few comets have established the characteristic composition of cometary gas. This gas is ionized by solar ultraviolet radiation and the solar wind to form ‘pick-up’ ions9,10,11, ions in a low ionization state that retain the same compositional signatures as the original gas. The pick-up ions are carried outward by the solar wind, and they could in principle be detected far from the coma. (Sampling of pick-up ions has also been used to study interplanetary dust12,13, Venus’ tail14 and the interstellar medium15,16.) Here we report the serendipitous detection of cometary pick-up ions, most probably associated with the tail of comet Hyakutake, at a distance of 3.4 au from the nucleus. Previous observations have provided a wealth of physical and chemical information about a small sample of comets6,7,8,9, but this detection suggests that remote sampling of comet compositions, and the discovery of otherwise invisible comets, may be possible.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mass per charge spectrum of C+ + O+ observed during a one-day period on 1 May 1996.
Figure 2: Density of C+ + O+ ions measured with SWICS at 3.73 au .
Figure 3: SWICS observations during 60 hours centred on 1 May 1996.

Similar content being viewed by others

References

  1. Huebner,W. F. & Benkhoff,J. From coma abundances to nucleus composition. Space Sci. Rev. 90, 117– 130 (1999).

    Article  ADS  CAS  Google Scholar 

  2. Crovisier,J. & Bockelée-Morvan,D. Remote observations of the composition of cometary volatiles. Space Sci. Rev. 90, 19–32 (1999).

    Article  ADS  CAS  Google Scholar 

  3. Biver,N. et al. Spectroscopic monitoring of comet C/1996 B2 (Hyakutake) with the JCMT and IRAM radio telescopes. Astrophys. J. 118, 1850–1872 (1999).

    CAS  Google Scholar 

  4. Combi,M. R. et al. Hubble Space Telescope ultraviolet imaging and high-resolution spectroscopy of water photodissociation products in comet Hyakutake (C/1996 B2). Astrophys. J. 494, 816– 821 (1999).

    Article  ADS  Google Scholar 

  5. Lisse,C. M. et al. The nucleus of comet Hyakutake (C/1996 B2). Icarus 140, 189–204 ( 1999).

    Article  ADS  Google Scholar 

  6. von Rosenvinge,T. T., Brandt,J. C. & Farquhar, R. W. The Cometary Explorer mission to comet Giacobini-Zinner. Science 232, 353–356 (1986).

    Article  ADS  CAS  Google Scholar 

  7. Encounters with comet Halley: the first results. in Nature 321 (Suppl.), 259– 366 (1986).

  8. Altwegg,K., Balsiger,H. & Geiss,J. Composition of the volatile material in Halley's coma from in situ measurements. Space Sci. Rev. 90, 3–18 (1999).

    Article  ADS  CAS  Google Scholar 

  9. Ipavich,F. M. et al. Comet Giacobini-Zinner - In situ observations of energetic heavy ions. Science 232, 366– 369 (1986).

    Article  ADS  CAS  Google Scholar 

  10. Gloeckler,G. et al. Cometary pick-up ions observed near Giacobini-Zinner. Geophys. Res. Lett. 13, 251–254 (1986).

    Article  ADS  Google Scholar 

  11. Neugebauer,M. et al. The density of cometary protons upstream of comet Halley's bow shock. J. Geophys. Res. 94, 1261– 1269 (1989).

    Article  ADS  CAS  Google Scholar 

  12. Geiss,J., Gloeckler,G., Fisk,L. A. & von Steiger,R. C+ pickup ions in the heliosphere and their origin. J. Geophys. Res. 100, 23373–23377 ( 1995).

    Article  ADS  CAS  Google Scholar 

  13. Gloeckler,G., Fisk,L. A., Geiss,J., Schwadron,N. A. & Zurbuchen, T. H. Elemental composition of the inner source pickup ions. J. Geophys. Res. 105, 7459– 7463 (2000).

    Article  ADS  CAS  Google Scholar 

  14. Grünwaldt,H. et al. Venus tail ray observation near Earth. Geophys. Res. Lett. 24, 1163–1166 (1997).

    Article  ADS  Google Scholar 

  15. Gloeckler,G. et al. Detection of interstellar pickup hydrogen in the solar system. Science 261, 70–73 (1993).

    Article  ADS  CAS  Google Scholar 

  16. Gloeckler,G. & Geiss,J. Interstellar and inner source pickup ions observed with SWICS on Ulysses. Space Sci. Rev. 86, 127–159 (1998).

    Article  ADS  CAS  Google Scholar 

  17. Balsiger,H. et al. Ion composition and dynamics at comet Halley. Nature 321, 330–336 ( 1986).

    Article  ADS  CAS  Google Scholar 

  18. Gloeckler,G. et al. The solar wind ion composition spectrometer. Astron. Astrophys. 92 (Suppl. Ser.) 267–289 (1992).

    ADS  Google Scholar 

  19. Jones,G. H., Balogh,A. & Horbury,T. S. Identification of comet Hyakutake's extremely long ion tail from magnetic field signatures. Nature 404, 574–576 (2000).

    Article  ADS  CAS  Google Scholar 

  20. Ip,W. H. & Axford,W. I. The formation of a magnetic-field-free cavity at Comet Halley. Nature 325, 418– 419 (1987).

    Article  ADS  Google Scholar 

  21. Biermann,L. Kometenschweife und solare Korpuskularstrahlung. Z. Naturforsch. 7a, 127–136 ( 1952).

    ADS  Google Scholar 

  22. Kissel,J. et al. Composition of comet Halley dust particles from Giotto observations. Nature 321, 336–337 (1986).

    Article  ADS  CAS  Google Scholar 

  23. Geiss,J. Composition measurements and the history of cometary matter. Astron. Astrophys. 187, 859–866 (1987).

    ADS  CAS  Google Scholar 

  24. Geiss,J., Altwegg,K., Balsiger,H. & Graf,S. Rare atoms, molecules and radicals in the coma of P/Halley. Space Sci. Rev. 90, 253–269 (1999).

    Article  ADS  CAS  Google Scholar 

  25. Neugebauer,M. et al. Densities and abundances of hot cometary ions in the coma of P/Halley. Astrophys. J. 372, 291– 300 (1991).

    Article  ADS  CAS  Google Scholar 

  26. Altwegg,K. et al. The ion population between 1300 km and 230000 km in the coma of comet P/Halley. Astron. Astrophys. 279, 260–266 (1993).

    ADS  CAS  Google Scholar 

  27. Grevesse,N. & Sauval,A. J. Standard solar composition. Space Sci. Rev. 85, 161–174 (1998).

    Article  ADS  CAS  Google Scholar 

  28. Schmidt,H. U. & Wegmann,R. in Comets (ed. Wilkening, L. L.) 538–560 (Univ. Arizona Press, Tucson, 1982).

    Google Scholar 

  29. Riley,P., Gosling,J. T. & McComas, D. J. Ulysses observations of a “density hole” in the high-speed solar wind. J. Geophys. Res. 103, 1933–1940 (1998).

    Article  ADS  Google Scholar 

  30. Jokipii,J. R. & Parker,E. N. Random walk of magnetic lines of force in astrophysics. Phys. Rev. Lett. 21, 44–47 (1968).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The SWICS instrument was developed by a collaboration of the universities of Maryland, Bern and Braunschweig, and the Max-Planck Institut für Aeronomie. We thank C. Gloeckler for help with data reduction, and M. R. Combi and M. F. A’Hearn for discussions. This work was supported by NASA/JPL and the Swiss National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Gloeckler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gloeckler, G., Geiss, J., Schwadron, N. et al. Interception of comet Hyakutake's ion tail at a distance of 500 million kilometres. Nature 404, 576–578 (2000). https://doi.org/10.1038/35007015

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35007015

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing