Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

DNA repair protein Ku80 suppresses chromosomal aberrations and malignant transformation

Abstract

Cancer susceptibility genes have been classified into two groups: gatekeepers and caretakers1. Gatekeepers are genes that control cell proliferation and death, whereas caretakers are DNA repair genes whose inactivation leads to genetic instability. Abrogation of both caretaker and gatekeeper function markedly increases cancer susceptibility. Although the importance of Ku80 in DNA double-strand break repair is well established, neither Ku80 nor other components of the non-homologous end-joining pathway are known to have a caretaker role in maintaining genomic stability. Here we show that mouse cells deficient for Ku80 display a marked increase in chromosomal aberrations, including breakage, translocations and aneuploidy. Despite the observed chromosome instabilities, Ku80-/- mice have only a slightly earlier onset of cancer2,3. Loss of p53 synergizes with Ku80 to promote tumorigenesis such that all Ku80-/-p53-/- mice succumb to disseminated pro-B-cell lymphoma before three months of age. Tumours result from a specific set of chromosomal translocations and gene amplifications involving IgH and c-Myc, reminiscent of Burkitt's lymphoma. We conclude that Ku80 is a caretaker gene that maintains the integrity of the genome by a mechanism involving the suppression of chromosomal rearrangements.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Growth characteristics of untreated and irradiated mouse embryo fibroblasts.
Figure 2: Analysis of lifespan and lymphocyte development.
Figure 3: c-myc and IgH-associated rearrangements and amplifications in Ku80-/-p53-/- tumours.
Figure 4: Chromosome aberrations in Ku80-/- and Ku80 -/-p53-/- MEFs.

Similar content being viewed by others

References

  1. Kinzler, K. W. & Vogelstein, B. Gatekeepers and caretakers. Nature 386, 761–763 ( 1997).

    Article  CAS  ADS  Google Scholar 

  2. Vogel, H., Lim, D. S., Karsenty, G., Finegold, M. & Hasty, P. Deletion of Ku86 causes early onset of senescence in mice. Proc. Natl Acad. Sci. USA 96, 10770 –10775 (1999).

    Article  CAS  ADS  Google Scholar 

  3. Nussenzweig, A. et al. Requirement for Ku80 in growth and immunoglobulin V(D)J recombination. Nature 382, 551–555 (1996).

    Article  CAS  ADS  Google Scholar 

  4. Zhu, C., Bogue, M. A., Lim, D. S., Hasty, P. & Roth, D. B. Ku86-deficient mice exhibit severe combined immunodeficiency and defective processing of V(D)J recombination intermediates. Cell 86, 379–389 ( 1996).

    Article  CAS  Google Scholar 

  5. Ouyang, H. et al. Ku70 is required for DNA repair but not for T cell antigen receptor gene recombination in vivo. J. Exp. Med. 186 , 921–929 (1997).

    Article  CAS  Google Scholar 

  6. Gu, Y. et al. Growth retardation and leaky SCID phenotype of Ku70-deficient mice. Immunity 7, 367–376 (1997).

    Article  Google Scholar 

  7. Gao, Y. et al. A critical role for DNA end-joining proteins in both lymphogenesis and neurogenesis. Cell 95, 891– 902 (1998).

    Article  CAS  Google Scholar 

  8. Frank, K. M. et al. Late embryonic lethality and impaired V(D)J recombination in mice lacking DNA ligase IV. Nature 396, 173–177 (1998).

    Article  CAS  ADS  Google Scholar 

  9. Barnes, D. E., Stamp, G., Rosewell, I., Denzel, A. & Lindahl, T. Targeted disruption of the gene encoding DNA ligase IV leads to lethality in embryonic mice. Curr. Biol. 8, 1395–1398 (1998).

    Article  CAS  Google Scholar 

  10. Levine, A. J. p53, the cellular gatekeeper for growth and division. Cell 88, 323–331 (1997).

    Article  CAS  Google Scholar 

  11. Jacks, T. et al. Tumor spectrum analysis in p53-mutant mice. Curr. Biol. 4, 1–7 ( 1994).

    Article  CAS  Google Scholar 

  12. Liyanage, M. et al. Multicolour spectral karyotyping of mouse chromosomes. Nature Genet. 14, 312–315 (1996).

    Article  CAS  Google Scholar 

  13. Taub, R. et al. Translocation of the c-myc gene into the immunoglobulin heavy chain locus in human Burkitt lymphoma and murine plasmacytoma cells. Proc. Natl Acad. Sci. USA 79, 7837– 7841 (1982).

    Article  CAS  ADS  Google Scholar 

  14. Vanasse, G. J. et al. Genetic pathway to recurrent chromsome translocations in murine lymphoma involves V(D)J recombinase. J. Clin. Invest. 103, 1669–1675 (1999).

    Article  CAS  Google Scholar 

  15. Gao, Y. et al. A targeted DNA-PKcs-null mutation reveals DNA-PK-independent functions for KU in V(D)J recombination. Immunity 9, 367–376 (1998).

    Article  CAS  Google Scholar 

  16. Lengauer, C., Kinzler, K. W. & Vogelstein, B. Genetic instabilities in human cancers. Nature 396, 643–649 ( 1998).

    Article  CAS  ADS  Google Scholar 

  17. Karanjawala, Z. E., Grawunder, U., Hsieh, C. L. & Lieber, M. R. The nonhomologous DNA end joining pathway is important for chromosome stability in primary fibroblasts. Curr. Biol. 9, 1501 –1504 (1999).

    Article  CAS  Google Scholar 

  18. Fukasawa, K., Choi, T., Kuriyama, R., Rulong, S. & Vande Woude, G. F. Abnormal centrosome amplification in the absence of p53. Science 271, 1744– 1747 (1996).

    Article  CAS  ADS  Google Scholar 

  19. Xu, X. et al. Centrosome amplification and a defective G2-M cell cycle checkpoint induce genetic instability in BRCA1 exon 11 isoform-deficient cells. Mol. Cell 3, 389–395 ( 1999).

    Article  CAS  Google Scholar 

  20. Agrawal, A., Eastman, Q. M. & Schatz, D. G. Transposition mediated by RAG1 and RAG2 and its implications for the evolution of the immune system. Nature 394, 744–751 (1998).

    Article  CAS  ADS  Google Scholar 

  21. Hiom, K., Melek, M. & Gellert, M. DNA transposition by the Rag1 and Rag2 proteins: a possible source of oncogenic translocations. Cell 94, 463–470 (1998).

    Article  CAS  Google Scholar 

  22. Ramsden, D. A. & Gellert, M. Ku protein stimulates DNA end joining by mammalian DNA ligases: a direct role for Ku in repair of DNA double-strand breaks. EMBO J 17, 609 –614 (1998).

    Article  CAS  Google Scholar 

  23. Smith, G. C. M. & Jackson, S. P. The DNA-dependent protein kinase. Genes Dev. 13, 916– 934 (1999).

    Article  CAS  Google Scholar 

  24. Chen, C., Umezu, K. & Kolodner, R. D. Chromosomal rearrangements occur in S. cerevisiae rfa1 mutator mutants due to mutagenic lesions processed by double-strand-break repair. Mol. Cell 2, 9– 22 (1998).

    Article  CAS  Google Scholar 

  25. Moynahan, M. E., Chiu, J. W., Koller, B. H. & Jasin, M. Brca1 controls homology-directed DNA repair. Mol. Cell 4, 511–518 (1999).

    Article  CAS  Google Scholar 

  26. Johnson, R. D., Liu, N. & Jasin, M. Mammalian XRCC2 promotes the repair of DNA double-strand breaks by homologous recombination. Nature 401, 397– 399 (1999).

    CAS  PubMed  ADS  Google Scholar 

  27. Timme, T. L. & Thompson, T. C. Rapid allelotype analysis of p53 knockout mice. Biotechniques 17, 462 –463 (1994).

    ADS  Google Scholar 

  28. Donehower, L. A. et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356, 215– 221 (1992).

    Article  CAS  ADS  Google Scholar 

  29. Ghadimi, B. M. et al. Centrosome amplification and instability occurs exclusively in aneuploid, but not in diploid colorectal cancer cell lines, and correlates with numerical chromosomal aberrations. Genes Chromosomes Cancer 27, 183–190 ( 2000).

    Article  CAS  Google Scholar 

  30. Chu, C. C., Paul, W. E. & Max, E. E. Quantitation of immunoglobulin µ-γ1 heavy chain switch region recombination by a digestion–circularization polymerase chain reaction method. Proc. Natl Acad. Sci. USA 89 , 6978–6982 (1992).

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

We thank A. Singer, R. Hodes, A. Bhandoola, E. Besmer and S. Sharrow for comments on the manuscript and helpful discussions; K. Huppi, B. Malynn and R. Riblet for probes; and D. Liewehr, S. Steinberg and T. Brotz for assistance. M.C.N. is an investigator of the Howard Hughes Medical Institute. A.N. was supported in part by an award from the Arthritis Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Nussenzweig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Difilippantonio, M., Zhu, J., Chen, H. et al. DNA repair protein Ku80 suppresses chromosomal aberrations and malignant transformation. Nature 404, 510–514 (2000). https://doi.org/10.1038/35006670

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35006670

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing