Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Complete DNA sequence of a serogroup A strain of Neisseria meningitidis Z2491

Abstract

Neisseria meningitidis causes bacterial meningitis and is therefore responsible for considerable morbidity and mortality in both the developed and the developing world. Meningococci are opportunistic pathogens that colonize the nasopharynges and oropharynges of asymptomatic carriers. For reasons that are still mostly unknown, they occasionally gain access to the blood, and subsequently to the cerebrospinal fluid, to cause septicaemia and meningitis. N. meningitidis strains are divided into a number of serogroups on the basis of the immunochemistry of their capsular polysaccharides; serogroup A strains are responsible for major epidemics and pandemics of meningococcal disease, and therefore most of the morbidity and mortality associated with this disease. Here we have determined the complete genome sequence of a serogroup A strain of Neisseria meningitidis, Z2491 (ref. 1). The sequence is 2,184,406 base pairs in length, with an overall G+C content of 51.8%, and contains 2,121 predicted coding sequences. The most notable feature of the genome is the presence of many hundreds of repetitive elements, ranging from short repeats, positioned either singly or in large multiple arrays, to insertion sequences and gene duplications of one kilobase or more. Many of these repeats appear to be involved in genome fluidity and antigenic variation in this important human pathogen.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Circular representation of the N. meningitidis Z2471 genome.
Figure 2: Types of N. meningitidis repeat.
Figure 3: Structure of selected repeat regions.
Figure 4: Graph showing the relationship between repeat array length and flanking gene function.

Similar content being viewed by others

References

  1. Dempsey, J. A., Wallace, A. B. & Cannon, J. G. The physical map of the chromosome of a serogroup A strain of Neisseria meningitidis shows complex rearrangements relative to the chromosomes of the two mapped strains of the closely related species N. gonorrhoeae. J. Bacteriol. 177, 6390 –6400 (1995).

    Article  CAS  Google Scholar 

  2. Curnow, A. W., Tumbula, D. L., Pelaschier, J. T., Min, B. & Soll, D. Glutamyl-tRNA (Gln) amidotransferase in Deinococcus radiodurans may be confined to asparagine biosynthesis. Proc. Natl Acad. Sci. USA 95, 12838– 12843 (1998).

    Article  ADS  CAS  Google Scholar 

  3. Andersson, S. G. et al. The genome sequence of Rickettsia prowazekii and the origin of mitochondria. Nature 396, 133– 140 (1998).

    Article  ADS  CAS  Google Scholar 

  4. Lobry, J. R. Asymmetric substitution patterns in the two DNA strands of bacteria. Mol. Biol. Evol. 13, 660–665 (1996).

    Article  CAS  Google Scholar 

  5. Smith, N. H., Holmes, E. C., Donovan, G. M., Carpenter, G. A. & Spratt, B. G. Networks and groups within the genus Neisseria: analysis of argF, recA, rho, and 16S rRNA sequences from human Neisseria species. Mol. Biol. Evol. 16, 773–783 (1999).

    Article  CAS  Google Scholar 

  6. Swartley, J. S. et al. Characterization of the gene cassette required for biosynthesis of the (α1→6)-linked N-acetyl-d-mannosamine-1-phosphate capsule of serogroup A Neisseria meningitidis. J. Bacteriol. 180, 1533–1539 ( 1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Goodman, S. D. & Scocca, J. J. Identification and arrangement of the DNA sequence recognized in specific transformation of Neisseria gonorrhoeae. Proc. Natl Acad. Sci. USA 85, 6982–6986 (1988)

    Article  ADS  CAS  Google Scholar 

  8. Correia, F. F., Inouye, S. & Inouye, M. A family of small repeated elements with some transposon-like properties in the genome of Neisseria gonorrhoeae. J. Biol. Chem. 263, 12194–12198 ( 1988).

    CAS  PubMed  Google Scholar 

  9. Haas, R. & Meyer, T. F. The repertoire of silent pilos genes in Neisseria gonorrhoeae: Evidence for gene conversion. Cell 44, 107–115 ( 1986).

    Article  CAS  Google Scholar 

  10. Mehr, I. J., & Seifert, H. S. Differential roles of homologous recombination pathways in Neisseria gonorrhoeae pilin antigenic variation, DNA transformation and DNA repair. Mol. Microbiol. 30, 697–710 (1998).

    Article  CAS  Google Scholar 

  11. Howell-Adams, B., Wainwright, L. A. & Seifert, H. S. The size and position of heterologous insertions in a silent locus differentially affect pilin recombination in Neisseria gonorrhoeae. Mol. Microbiol. 22, 509 –522 (1996).

    Article  CAS  Google Scholar 

  12. Wainwright, L. A., Pritchard, K. H. & Seifert, H. S. A conserved DNA sequence is required for efficient gonococcal pilin antigenic variation. Mol. Microbiol. 13, 75–87 (1994).

    Article  CAS  Google Scholar 

  13. Pettersson, A., Prinz, T., Umar, A., van der Biezen, J. & Tommassen, J. Molecular characterization of LbpB, the second lactoferrin-binding protein of Neisseria meningitidis. Mol. Microbiol. 27, 599–610 (1998).

    Article  CAS  Google Scholar 

  14. Vonder Haar, R. A., Legrain, M., Kolbe, H. V. & Jacobs, E. Characterization of a highly structured domain in Tbp2 from Neisseria meningitidis involved in binding to human transferrin. J. Bacteriol. 176, 6207–6213 (1994).

    Article  CAS  Google Scholar 

  15. Lewis, L. A., Gray, E., Wang, Y. P., Roe, B. A., & Dyer, D. W. Molecular characterization of hpuAB, the haemoglobin-haptoglobin-utilization operon of Neisseria meningitidis. Mol. Microbiol. 23, 737–749 (1997).

    Article  CAS  Google Scholar 

  16. Adhikari, P., Berish, S. A., Nowalk, A. J., Veraldi, K. L., Morse, S. A. & Mietzner, T. A. The fbpABC locus of Neisseria gonorrhoeae functions in the periplasm-to-cytosol transport of iron. J. Bacteriol. 178, 2145–2149 (1996).

    Article  CAS  Google Scholar 

  17. Stojiljkovic, I. et. al. The Neisseria meningitidis haemoglobin receptor: its role in iron utilization and virulence. Mol. Microbiol. 15, 531–541 (1995).

    Article  CAS  Google Scholar 

  18. Klee, S. R. et al. Molecular and biological analysis of eight genetic islands that distinguish Neisseria meningitidis from the closely related pathogen Neisseria gonorrhoeae. Infect. Immunity (in the press).

  19. Domenighini, M. et al. Genetic characterization of Bordetella pertussis filamentous haemagglutinin: a protein processed from an unusually large precursor. Mol. Microbiol. 4, 787–800 (1990).

    Article  CAS  Google Scholar 

  20. Henderson, I. R., Owen, P. & Nataro, J. P. Molecular switches–the ON and OFF of bacterial phase variation. Mol. Microbiol. 33, 919 –932 (1999).

    Article  CAS  Google Scholar 

  21. Sarkari, J., Pandit, N., Moxon, E. R. & Achtman, M. Variable expression of the Opc outer membrane protein in Neisseria meningitidis is caused by size variation of a promoter containing poly-cytidine. Mol. Microbiol. 13, 207–217 ( 1994).

    Article  CAS  Google Scholar 

  22. van der Ende, A. et al. Variable expression of class 1 outer membrane protein in Neisseria meningitidis is caused by variation in the spacing between the-10 and-35 regions of the promoter. J. Bacteriol. 177, 2475–2480 (1995).

    Article  CAS  Google Scholar 

  23. Zhou, J. & Spratt, B. G. Sequence diversity within the argF, fbp and recA genes of natural isolates of Neisseria meningitidis: interspecies recombination within the argF gene. Mol. Microbiol. 6, 2135– 2146 (1992).

    Article  CAS  Google Scholar 

  24. Bonfield, J. K., Smith, K. F. & Staden, R. A new DNA sequence assembly program. Nucleic Acids Res. 23, 4992–4999 (1995).

    Article  CAS  Google Scholar 

  25. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 ( 1990).

    Article  CAS  Google Scholar 

  26. Lowe, T. M. & Eddy, S. R. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25, 955–964 ( 1997).

    Article  CAS  Google Scholar 

  27. Frishman, D., Mironov, A., Mewes, H. W. & Gelfand, M. Combining diverse evidence for gene recognition in completely sequenced bacterial genomes. Nucleic Acids Res. 26, 2941– 2947 (1998).

    Article  CAS  Google Scholar 

  28. Salzberg, S. L., Delcher, A. L., Kasif, S. & White, O. Microbial gene identification using interpolated Markov models. Nucleic Acids Res. 26, 544–548 (1998).

    Article  CAS  Google Scholar 

  29. Bateman, A. et al. Pfam 3.1: 1,313 multiple alignments and profile HMMs match the majority of proteins. Nucleic Acids Res. 27, 260–262 (1999).

    Article  CAS  Google Scholar 

  30. Higgins, D. G., Bleasby, A. J. & Fuchs, R. CLUSTAL V: improved software for multiple sequence alignment. Comput. Appl. Biosci. 8, 189– 191 (1992).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was funded by The Wellcome Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Parkhill.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parkhill, J., Achtman, M., James, K. et al. Complete DNA sequence of a serogroup A strain of Neisseria meningitidis Z2491. Nature 404, 502–506 (2000). https://doi.org/10.1038/35006655

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35006655

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing