Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Three-dimensional structure of the neuronal-Sec1–syntaxin 1a complex

Abstract

Syntaxin 1a and neuronal Sec1 (nSec1) form an evolutionarily conserved heterodimer that is essential for vesicle trafficking and membrane fusion. The crystal structure of the nSec1–syntaxin 1a complex, determined at 2.6 Å resolution, reveals that major conformational rearrangements occur in syntaxin relative to both the core SNARE complex and isolated syntaxin. We identify regions of the two proteins that seem to determine the binding specificity of particular Sec1 proteins for syntaxin isoforms, which is likely to be important for the fidelity of membrane trafficking. The structure also indicates mechanisms that might couple the action of upstream effector proteins to conformational changes in syntaxin 1a and nSec1 that lead to core complex formation and membrane fusion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of nSec1 and syntaxin 1a.
Figure 2: Ribbon representation of the nSec1–syntaxin 1a complex.
Figure 3: Structure-based sequence alignments.
Figure 4: Electrostatic surface potentials of nSec1 and syntaxin 1a.
Figure 5: Sites of Sec1 and syntaxin mutations.
Figure 6: Model for the role of nSec1 in membrane fusion.

Similar content being viewed by others

References

  1. Palade, G. Intracellular aspects of the process of protein secretion. Science 189, 347–358 ( 1975).

    Article  ADS  CAS  Google Scholar 

  2. Südhof, T. C. The synaptic vesicle cycle: a cascade of protein-protein interactions. Nature 375, 645–653 ( 1995).

    Article  ADS  Google Scholar 

  3. Sutton, R. B. et al. Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 Å resolution. Nature 395, 347–353 (1998).

    Article  ADS  CAS  Google Scholar 

  4. Poirier, M. A. et al. The synaptic SNARE complex is a parallel four-stranded helical bundle. Nature Struct. Biol. 5, 765– 769 (1998).

    Article  CAS  Google Scholar 

  5. Hanson, P. I. et al. Structure and conformational changes in NSF and its membrane receptor complexes visualized by quick-freeze/deep-etch electron microscopy. Cell 90, 523–535 (1997).

    Article  CAS  Google Scholar 

  6. Weber, T. et al. SNAREpins: minimal machinery for membrane fusion. Cell 92, 759–772 ( 1998).

    Article  CAS  Google Scholar 

  7. Chen, Y. A. et al. SNARE complex formation is triggered by Ca+2 and drives membrane fusion. Cell 97, 165 –174 (1999).

    Article  CAS  Google Scholar 

  8. Mayer, A., Wickner, W. & Haas, A. Sec18p (NSF)-driven release of Sec17p (α-SNAP) can precede docking and fusion of yeast vacuoles. Cell 85, 83–94 (1996).

    Article  CAS  Google Scholar 

  9. Söllner, T. et al. A protein assembly–disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion. Cell 75, 409– 418 (1993).

    Article  Google Scholar 

  10. Pevsner, J., Hsu, S. -C. & Scheller, R. H. n-Sec1: a neural-specific syntaxin-binding protein. Proc. Natl Acad. Sci. USA 91, 1445– 1449 (1994).

    Article  ADS  CAS  Google Scholar 

  11. Garcia, E. P. et al. A rat brain Sec1 homologue related to Rop and UNC18 interacts with syntaxin. Proc. Natl Acad. Sci. USA 91, 2003–2007 (1994).

    Article  ADS  CAS  Google Scholar 

  12. Hata, Y., Slaughter, C. A. & Südhof, T. C. Synaptic vesicle fusion complex contains unc-18 homologue bound to syntaxin. Nature 366, 347–351 (1993).

    Article  ADS  CAS  Google Scholar 

  13. Pevsner, J. et al. Specificity and regulation of a synaptic vesicle docking complex. Neuron 13, 353–361 (1994).

    Article  CAS  Google Scholar 

  14. Yang, B. et al. nSec1 binds a closed conformation of syntaxin 1a. J. Cell Biol. 148, 247–252 (2000).

    Article  CAS  Google Scholar 

  15. Schulze, K. L. et al. rop, a Drosophila homolog of yeast Sec1 and vertebrate n-Sec1/Munc-18 proteins, is a negative regulator of neurotransmitter release in vivo. Neuron 13, 1099–1108 ( 1994).

    Article  CAS  Google Scholar 

  16. Schekman, R. Genetic and biochemical analysis of vesicular traffic in yeast. Curr. Opin. Cell Biol. 4, 587–592 (1992).

    Article  CAS  Google Scholar 

  17. Verhage, M. et al. Synaptic assembly of the brain in the absence of neurotransmitter secretion. Science 287, 864– 869 (2000).

    Article  ADS  CAS  Google Scholar 

  18. Rowe, J. et al. Blockade of membrane transport and disassembly of the Golgi complex by expression of syntaxin 1a in neurosecretion incompetent cells: prevention by rbSec1. J. Cell Sci. 112, 1865– 1877 (1999).

    CAS  PubMed  Google Scholar 

  19. Pfeffer, S. Transport-vesicle targeting: tethers before SNAREs. Nature Cell Biol. 1, 17–22 ( 1999).

    Article  Google Scholar 

  20. Kee, Y. et al. Distinct domains of syntaxin are required for synaptic vesicle fusion complex formation and dissociation. Neuron 14 , 991–998 (1995).

    Article  CAS  Google Scholar 

  21. Fernandez, I. et al. Three-dimensional structure of an evolutionarily conserved N-terminal domain of syntaxin1a. Cell 94, 841–849 (1998).

    Article  CAS  Google Scholar 

  22. Dulubova, I. et al. A conformational switch in syntaxin1a during exocytosis: role of munc18c. EMBO J. 18, 4372– 4382 (1999).

    Article  CAS  Google Scholar 

  23. Fiebig, K. M. et al. Folding intermediates of SNARE complex assembly. Nature Struct. Biol. 6, 117–123 (1998).

    Google Scholar 

  24. Tellam, J. T. et al. Characterization of Munc-18c and syntaxin-4 in 3T3-L1 adipocytes. J. Biol. Chem. 272, 6179– 6186 (1997).

    Article  CAS  Google Scholar 

  25. Calakos, N. et al. Protein–protein interactions contributing to the specificity of intracellular vesicular trafficking. Science 263 , 1146–1149 (1994).

    Article  ADS  CAS  Google Scholar 

  26. Nicholson, K. L. et al. Regulation of SNARE complex assembly by an N-terminal domain of the t-SNARE Sso1p. Nature Struct. Biol. 5, 793–802 (1998).

    Article  CAS  Google Scholar 

  27. Fujita, Y. et al. Phosphorylation of Munc-18/n-Sec1/rbSec1 by protein kinase C. J. Biol. Chem. 271, 7265– 7268 (1996).

    Article  CAS  Google Scholar 

  28. Fletcher, A. I. et al. Regulation of exocytosis by cyclin-dependent kinase 5 via phosphorylation of munc18. J. Biol. Chem. 274, 4027–4035 (1999).

    Article  CAS  Google Scholar 

  29. Harrison, S. D. et al. Mutations in the Drosophila Rop gene suggest a function in general secretion and synaptic transmission. Neuron 13, 555–566 (1994).

    Article  CAS  Google Scholar 

  30. Wu, M. N. et al. ROP, the Drosophila Sec1 homolog, interacts with syntaxin and regulates neurotransmitter release in a dosage-dependent manner. EMBO J. 17, 127–139 ( 1998).

    Article  CAS  Google Scholar 

  31. Dascher, C. et al. Identification and structure of four yeast genes (SLY) that are able to suppress the functional loss of YPT1, a member of the RAS superfamily. Mol. Cell. Biol. 11, 872–885 (1991).

    Article  CAS  Google Scholar 

  32. Wu, M. N. et al. Syntaxin1a interacts with multiple exocytic proteins to regulate neurotransmitter release in vivo. Neuron 23, 593–605 (1999).

    Article  CAS  Google Scholar 

  33. Lupashin, V. V. & Waters, M. G. t-SNARE activation through transient interaction with a Rab-like guanosine triphosphatase. Science 276, 1255–1258 ( 1997).

    Article  CAS  Google Scholar 

  34. Tall, G. G. et al. The phosphatidylinosatol-3-phosphate binding protein Vac1p interacts with a Rab GTPase and a Sec1p homologue to facilitate vesicle-mediated protein sorting. Mol. Biol. Cell 10, 1873 –1889 (1999).

    Article  CAS  Google Scholar 

  35. Webb, G. C. et al. Genetic interactions between a pep7 mutation and the PEP12 and VPS45 genes: evidence for a novel SNARE component in transport between the Saccharomyces cerevisiae Golgi complex and the endosome. Genetics 147, 467–478 ( 1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Sassa, T. et al. Regulation of the UNC-18–Caenorhabditis elegans syntaxin complex by UNC-13. J. Neurosci. 19, 4772–4777 (1999).

    Article  CAS  Google Scholar 

  37. Fasshauer, D. et al. A structural change occurs upon binding of syntaxin to SNAP-25. J. Biol. Chem. 272, 4582– 4590 (1997).

    Article  CAS  Google Scholar 

  38. Carr, C. M. et al. Sec1p binds to SNARE complexes and concentrates at sites of secretion. J. Cell Biol. 146, 333– 344 (1999).

    Article  CAS  Google Scholar 

  39. Fasshauer, D. et al. Mixed and non-cognate SNARE complexes. Characterization of assembly and biophysical properties. J. Biol. Chem. 274, 15440–15446 (1999).

    Article  CAS  Google Scholar 

  40. Yang, B. et al. SNARE interactions are not selective. Implications for membrane fusion specificity. J. Biol. Chem. 274, 5649–5653 (1999).

    Article  CAS  Google Scholar 

  41. Leahy, D. J. et al. Crystallization of a fragment of human fibronectin: introduction of methionine by site-directed mutagenesis to allow phasing via selenomethionine. Proteins 19, 48–54 (1994).

    Article  CAS  Google Scholar 

  42. Otwinowski, Z. & Minor, W. Processing of x-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 ( 1997).

    Article  CAS  Google Scholar 

  43. Terwilliger, T. C. SOLVE: An automated crystallographic structure solution program for MIR and MAD. Edition 1.15 (www.solve.lanl.gov, Los Alamos National Laboratory, 1997).

  44. Brünger, A. T. et al. Crystallography and NMR System (CNS): a new software system for macromolecular structure determination. Acta Cryst. D 54, 905–921 (1998).

    Article  Google Scholar 

  45. Jones, T. A. et al. Improved methods for the building of protein models in electron density maps and the location of errors in these models. Acta Cryst. A47, 110–119 ( 1991).

    Article  CAS  Google Scholar 

  46. Laskowski, R. A. et al. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Cryst. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

  47. Kraulis, P. J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Cryst. 24, 946– 950 (1991).

    Article  Google Scholar 

  48. Bock, J. B. et al. Syntaxin 6 functions in trans-Golgi network vesicle trafficking. Mol. Biol. Cell 8, 1261– 1271 (1997).

    Article  CAS  Google Scholar 

  49. Nicholls, A. GRASP: Graphical Representation and Analysis of Surface Properties (Columbia Univ., New York, 1992).

    Google Scholar 

Download references

Acknowledgements

We thank H. Bellamy, P. Kuhn, A. Cohen and M. Soltis of SSRL for beamline support; A. Kolatkar, J. Wedekind and members of the Weis laboratory for assistance with data collection and discussions; K. Ervin, R. Hollomon and L. Cai for technical support; F. Hughson for providing Habc coordinates before publication; K. Harlos for providing flat bottom micro-bridges; and A. Brünger, A. May and S. Scales for comments on the manuscript. This work is based on research conducted at SSRL, which is funded by the Department of Energy, Office of Basic Energy Sciences. The Biotechnology Program is supported by the National Institutes of Health, National Center for Research Resources, Biomedical Technology Program and the Department of Energy, Office of Biological and Environmental Research. K.M.S.M was supported by a Molecular Biophysics training grant from the NIH. This work was supported by grants from the National Institutes of Mental Health to R.H.S. and W.I.W., and also the Pew Scholars Program in the Biomedical Sciences and a Stanford University/Howard Hughes Medical Institute Junior Faculty Award to W.I.W.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William I. Weis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Misura, K., Scheller, R. & Weis, W. Three-dimensional structure of the neuronal-Sec1–syntaxin 1a complex . Nature 404, 355–362 (2000). https://doi.org/10.1038/35006120

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35006120

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing