Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Low variability in a Y-linked plant gene and its implications for Y-chromosome evolution

Abstract

Sex chromosomes have evolved independently in several different groups of organisms, but they share common features, including genetic degeneration of the Y chromosome1,2. Suppression of recombination between ancestral proto-X and proto-Y chromosomes is thought to have led to their gradual divergence, and to degeneration of the Y chromosome2, but the evolutionary forces responsible are unknown. In non-recombining Y chromosomes, deleterious mutations may be carried to fixation by linked advantageous mutations (“selective sweeps”)3. Occurrence of deleterious mutations may drive “Muller's ratchet” (stochastic loss of chromosomes with the fewest mutations)2,4. Selective elimination of deleterious mutations, causing “background selection”5,6 may accelerate stochastic fixation of mildly detrimental mutations2. All these processes lower effective population sizes, and therefore reduce variability of genes in evolving Y chromosomes. We have studied DNA diversity and divergence in a recently described X- and Y-linked gene pair7 (SLX-1 and SLY-1) of the plant Silene latifolia to obtain evidence about the early stages of Y degeneration. Here we show that DNA polymorphism in SLY-1 is 20-fold lower than in SLX-1, but the pattern of polymorphism does not suggest a selective sweep.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Location of the 2-kb 3′ region of the SLX-1 and SLY-1 genes sequenced in this study.
Figure 2: Phylogenetic neighbour-joining tree for a 2-kb region of SLY-1 and SLX-1, constructed using 12 sequences of each of the X- and Y-linked alleles.

Similar content being viewed by others

References

  1. Bull, J. J. Evolution of Sex Determining Mechanisms. (Benjamin/Cummings, Menlo Park, 1993).

    Google Scholar 

  2. Charlesworth, B. The evolution of chromosomal sex determination and dosage compensation. Curr. Biol. 6, 149–162 (1996).

    Article  CAS  PubMed  Google Scholar 

  3. Rice, W. R. Genetic hitchhiking and the evolution of reduced genetic activity of the Y sex chromosome. Genetics 116, 161–167 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Manning, J. T. & Thompson, D. J. Muller's ratchet and the accumulation of favourable mutations. Acta Biotheoretica 33, 219–225 (1984).

    Article  Google Scholar 

  5. Charlesworth, D., Charlesworth, B. & Morgan, M. T. The pattern of neutral molecular variation under the background selection model. Genetics 141, 1619–1632 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Orr, H. A. & Kim, Y. An adaptive hypothesis for the evolution of the Y chromosome. Genetics 150, 1693–1698 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Delichère, C. et al. SlY1, the first active gene cloned from a plant Y chromosome encodes a WD-repeat protein. EMBO J. 18, 4169–4179 (1999).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Grant, S. et al. Genetics of sex determination in flowering plants. Dev. Genet. 15, 214–230 (1994).

    Article  Google Scholar 

  9. Westergaard, M. The mechanism of sex determination in dioecious flowering plants. Adv. Genet. 9, 217–281 (1959).

    Article  Google Scholar 

  10. Desfeux, C. et al. Evolution of reproductive systems in genus Silene. Proc. R. Soc. Lond. B. 263, 409–414 (1996).

    Article  ADS  CAS  Google Scholar 

  11. Anagnostopoulos, T., Green, P. M., Rowley, G., Lewis, C. M. & Giannelli, F. DNA variation in a 5-Mb region of the X-chromosome and estimates of sex-specific/type-specific mutation rates. Am. J. Hum. Genet. 64, 508–517 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Burrows, W. & Ryder, O. A. Y-chromosome variation in great apes. Nature 385, 125–126 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Lundrigan, B. L. & Tucker, P. K. Tracing paternal ancestry in mice, using the Y-linked sex-determining locus Sry. Mol. Biol. Evol. 11, 483–492 (1994).

    CAS  PubMed  Google Scholar 

  14. Nachman, M. W. & Aquadro, C. F. Polymorphism and divergence at the 5′ flanking region of the sex determining locus, Sry, in mice. Mol. Biol. Evol. 11, 539–547 (1994).

    CAS  PubMed  Google Scholar 

  15. Zurovcova, M. & Eanes, W. F. Lack of nucleotide polymorphism in the Y-linked sperm flagellar dynein gene Dhc-Yh3 of Drosophila melanogaster and D. simulans. Genetics 153, 1709–1715 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. McAllister, B. & Charlesworth, B. Reduced sequence variability on the neo-Y chromosome of Drosophila americana americana. Genetics 153, 221–233 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Ye, D. et al. Sex determination in the dioecious Melandrium. I. First lessons from androgenic haploids. Sex. Plant Reprod. 3, 179–186 (1990).

    Article  Google Scholar 

  18. Vagera, J., Paulikova, D. & Dolezel, J. The development of male and female regenerants by in vitro Androgenesis in dioecious plant Melandrium album. Ann. Botany 73, 455–459 (1994).

    Article  Google Scholar 

  19. Bùzek, J. et al. Isolation and characterization of X chromosome-derived DNA sequences from a dioecious plant Melandrium album. Chromosome Res. 5, 57–65 (1997).

    Article  PubMed  Google Scholar 

  20. Guttman, D. S. & Charlesworth, D. An X-linked gene with a degenerate Y-linked homologue in a dioecious plant. Nature 393, 263–265 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Nei, M. Molecular Evolutionary Genetics. (Columbia Univ. Press, New York, 1987).

    Google Scholar 

  22. Hudson, R. R. & Kaplan, N. L. Statistical properties of the number of recombination events in the history of a sample of DNA sequences. Genetics 111, 147–164 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Hudson, R. R. Estimating the recombination parameter of a finite population model without selection. Genet. Res. 50, 245–250 (1987).

    Article  CAS  PubMed  Google Scholar 

  24. Gaut, B. S. Molecular clocks and nucleotide substitution rates in higher plants. Evol. Biol. 30, 93–120 (1998).

    CAS  Google Scholar 

  25. Hudson, R. R. Gene genealogies and the coalescent process. Oxf. Surv. Evol. Biol. 7, 1–44 (1990).

    Google Scholar 

  26. Fu, Y. -X. & Li, W.-H. Statistical tests of neutrality of mutations. Genetics 133, 693–709 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Tajima, F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123, 585–595 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Filatov., D. A. & Charlesworth, D. DNA polymorphism, haplotype structure and balancing selection in the Leavenworthia PgiC locus. Genetics 153, 1423–1434 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Braverman, J. M., Hudson, R. R., Kaplan, N. L., Langley, C. H. & Stephan, W. The hitchhiking effect on the site frequency spectrum of DNA polymorphism. Genetics 140, 783–796 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Kumar, S., Tamura, K. & Nei, M. MEGA: Molecular Evolutionary Genetics Analysis, version 1.0. (Pennsylvania State Univ., Univ. Park, 1993).

    Google Scholar 

Download references

Acknowledgements

We thank M. Turelli and B. Charlesworth for discussions and advice. D.C. was supported by the Natural Environment Research Council of Great Britain, D.A.F. by a grant from the Leverhulme Trust, and F.M. and I.N. by research contracts from the Centre National de la Recherche Scientifique, the Institut National de la Recherche Agrononique and the Ecole Normale Supérieure of France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deborah Charlesworth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Filatov, D., Monéger, F., Negrutiu, I. et al. Low variability in a Y-linked plant gene and its implications for Y-chromosome evolution. Nature 404, 388–390 (2000). https://doi.org/10.1038/35006057

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35006057

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing