Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Predictive accuracy of population viability analysis in conservation biology

Abstract

Population viability analysis (PVA) is widely applied in conservation biology to predict extinction risks for threatened species and to compare alternative options for their mangement1,2,3,4. It can also be used as a basis for listing species as endangered under World Conservation Union criteria5. However, there is considerable scepticism regarding the predictive accuracy of PVA, mainly because of a lack of validation in real systems2,6,7,8. Here we conducted a retrospective test of PVA based on 21 long-term ecological studies—the first comprehensive and replicated evaluation of the predictive powers of PVA. Parameters were estimated from the first half of each data set and the second half was used to evaluate the performance of the model. Contrary to recent criticisms, we found that PVA predictions were surprisingly accurate. The risk of population decline closely matched observed outcomes, there was no significant bias, and population size projections did not differ significantly from reality. Furthermore, the predictions of the five PVA software packages were highly concordant. We conclude that PVA is a valid and sufficiently accurate tool for categorizing and managing endangered species.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Plot of the PVA-predicted probability of population decline (quasi-extinction risk) versus the actual proportion of the 21 real populations that decline below the corresponding threshold size.
Figure 2: Signed predictive bias in projected population size (compared with actual population numbers), taken across 21 populations for five PVA packages.

References

  1. Boyce, M. S. Population viability analysis. Annu. Rev. Ecol. Syst. 23, 481–506 (1992).

    Article  Google Scholar 

  2. Beissinger, S. R. & Westphal, M. I. On the use of demographic models of population viability in endangered species management. J. Wildl. Mgmt. 62, 821–841 (1998).

    Article  Google Scholar 

  3. Groom, M. J. & Pascual, M. A. in Conservation Biology (eds Fiedler, P. L. & Kareiva, P. M.) 4–27 (Chapman & Hall, New York, 1998).

    Google Scholar 

  4. Norton, T. W. (ed.) Special issue: applications of population viability analysis to biodiversity conservation. Biol. Conserv. 73, 91– 176 (1995).

    Article  Google Scholar 

  5. International Union for the Conservation of Nature. IUCN Red List Categories (Gland, Switzerland, 1994).

    Google Scholar 

  6. Caughley, G. Directions in conservation biology. J. Anim. Ecol. 63, 215–244 (1994).

    Article  Google Scholar 

  7. Taylor, B. L. The reliability of using population viability analysis for risk classification of species. Conserv. Biol. 9, 551– 558 (1995).

    Article  Google Scholar 

  8. Ludwig, D. Is it meaningful to estimate a probability of extinction? Ecology 80, 298–310 ( 1999).

    Article  Google Scholar 

  9. Possingham, H. P., Lindenmayer, D. B. & Norton, T. W. A framework for the improvement of threatened species based on population viability analysis (PVA). Pac. Conserv. Biol. 1, 38–45 (1993 ).

    Google Scholar 

  10. Ralls, K. & Taylor, B. L. in The Ecological Basis of Conservation: Heterogeneity, Ecosystems, and Biodiversity (eds Pickett, S. B. A., Ostfeld, R. S., Shachak, M. & Likens, G. E.) 228– 235 (Chapman & Hall, New York, 1997).

    Book  Google Scholar 

  11. Talbot, J. Land and Environment Court of New South Wales: Record of Hearing #10151 of 1994 (Court Report, Sydney, 1994).

    Google Scholar 

  12. Soulé, M. E. & Kohm, K. A. Research Priorities for Conservation Biology (Island, Washington DC, 1989 ).

    Google Scholar 

  13. Brook, B. W., Lim, L., Harden, R. & Frankham, R. Does population viability analysis software predict the behaviour of real populations? A retrospective study on the Lord Howe Island woodhen Tricholimnas sylvestris (Sclater). Biol. Conserv. 82, 119– 128 (1997).

    Article  Google Scholar 

  14. Brook, B. W., Cannon, J. R., Lacy, R. C., Mirande, C. & Frankham, R. A comparison of the population viability analysis packages GAPPS, INMAT, RAMAS and VORTEX for the Whooping crane (Grus americana). Anim. Conserv. 2, 23–31 (1999).

    Article  Google Scholar 

  15. Wigley, T. M. L. Climate change: a successful prediction? Nature 376 , 463–464 (1995).

    Article  ADS  CAS  Google Scholar 

  16. Ramanathan, R. Introductory Econometrics with Applications 2nd edn (Dryden, Fort Worth, 1995).

    Google Scholar 

  17. Oreskes, N., Shrader-Frenchette, K. & Belitz, K. Verification, validation, and the confirmation of numerical models in the earth sciences. Science 263, 641–646 (1994).

    Article  ADS  CAS  Google Scholar 

  18. Wahlberg, N., Moilanen, A. & Hanski, I. Predicting the occurrence of endangered species in fragmented landscapes. Science 273, 1536– 1538 (1996).

    Article  ADS  CAS  Google Scholar 

  19. Huggard, D. J. A linear programming model of herbivore foraging: imprecise, yet successful? Oecologia 100, 470–474 (1994).

    Article  ADS  Google Scholar 

  20. Belovsky, G. E. How good must models and data be in ecology? Oecologia 100, 475–480 (1994).

    Article  ADS  Google Scholar 

  21. Ginzburg, L. R., Slobodkin, L. B., Johnson, K. & Bindman, A. G. Quasiextinction probabilities as a measure of impact on population growth. Risk Anal. 2, 171–182 (1982).

    Article  Google Scholar 

  22. Sokal, R. R. & Rohlf, F. J. Biometry 4th edn (Freeman, New York, 1995).

    MATH  Google Scholar 

  23. Akçakaya, H. R., Burgman, M. A. & Ginzburg, L. R. Applied Population Ecology 2nd edn (Sinauer, Sunderland, Massachusetts, 1999).

    Google Scholar 

  24. Grenfell, B. T., Price, O. F., Albon, S. D. & Clutton-Brock, T. H. Overcompensation and population cycles in an ungulate. Nature 355, 823–826 (1992).

    Article  ADS  CAS  Google Scholar 

  25. Burgman, M. A., Ferson, S. & Akçakaya, H. R. Risk Assessment in Conservation Biology (Chapman & Hall, London, 1993).

    Google Scholar 

  26. Zeckhauser, R. J. & Viscusi, W. K. Risk within reason. Science 248, 559– 564 (1990).

    Article  ADS  CAS  Google Scholar 

  27. Mills, L. S. et al. Factors leading to different viability predictions for a grizzly bear data set. Conserv. Biol. 10, 863– 873 (1996).

    Article  Google Scholar 

  28. Reynolds, M. R., Burkhart, H. E. & Daniels, R. F. Procedures for statistical validation of stochastic simulation models. Forest Sci. 27, 349– 364 (1981).

    Google Scholar 

  29. Arnqvist, G. & Wooster, D. Meta-analysis: synthesizing research findings in ecology and evolution. Trends Ecol. Evol. 10, 236–240 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Armitage, M. Boyce, J. Cannon, C. Catterall, T. Clutton-Brock, M. Curry, B. Grenfell, R. Harden, J. Kikkawa, M. Lynch, C. Mirande, R. Peterson, C. Schwartz, P. Smith, J. Vucetich and the Interagency Grizzly Bear Study Team for supplying data, and S. Andelman, J. Ballou, J. Bull, S. Ferson, I. Hanski, R. Harris, J. Kikkawa, R. Lacy, H. McCallum, M. McCarthy, S. Mills, P. Miller, S. Pimm, H. Regan and M. Soulé for comments on the manuscript. This study was funded by Australian Research Council and Macquarie University grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barry W. Brook.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Brook, B., O'Grady, J., Chapman, A. et al. Predictive accuracy of population viability analysis in conservation biology. Nature 404, 385–387 (2000). https://doi.org/10.1038/35006050

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35006050

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing