Importance of continental margins in the marine biogeochemical cycling of carbon and nitrogen

Article metrics

Abstract

THE continental margins occupy less than 20% of the surface area of the world ocean, and it is widely assumed that they do not play a significant part in the oceanic biogeochemical cycles of carbon and nitrogen. Data from 32 sediment-trap moorings, 16 in the deep sea and 16 on the continental slope1, suggest that at an average depth of 2,650 m on the slope, the combined rain of surviving shelf and slope particles yields a mean carbon flux of 6.9 g C m−2 yr−1—about ten times that at the same average depth in the deep sea (0.8 g C m−2 yr−1). Because the area of the deep sea is about ten times greater than that of the continental slopes, using the sediment-trap data and assuming a carbon/nitrogen ratio of 5:1, the equivalent total particulate offshore nitrogen loss is 0.5 × 1014 g N yr−1 at 2,650 m. If these trap observations are generally representative of the oceans and continental margins, then the supply of dissolved nitrate to the overlying euphotic zones should also be similar. Here I provide an independent estimate of the annual supply of onwelling nitrate from the deep sea to the shelves and find that it may balance the offshore flux of carbon, suggesting that the continental margins and deep sea are equally important in the carbon and nitrogen biogeochemical cycles.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Walsh, J. J., Dieterle, D. A. & Pribble, J. R. Deep Sea Res. (in the press).

  2. 2

    Biscaye, P. E., Anderson, R. F. & Deck, R. L. Cont. Shelf Res. 8, 885–904 (1988).

  3. 3

    Jackson, G. A. et al. Eos 70, 146–155 (1989).

  4. 4

    Honjo, S., Manganini, S. J. & Cole, J. J. Deep Sea Res. 26, 609–625 (1982).

  5. 5

    Eppley, R. W. & Peterson, B. J. Nature 282, 677–680 (1979).

  6. 6

    Walsh, J. J. Limnol. Oceanogr. 21, 1–13 (1976).

  7. 7

    Bailey, G. W. & Chapman, P. in South African Ocean Colour and Upwelling Experiment (ed. Shannon, L. W.) 125–146 (Sea Fish. Res. Inst., Cape Town, 1985).

  8. 8

    Walsh, J. J. et al. Deep Sea Res. 27, 1–27 (1980).

  9. 9

    McGill, D. A. in The Biology of the Indian Ocean (Ed. Zeitzschel, B.) 53–102 (Springer, Berlin, 1973).

  10. 10

    Codispoti, L. A. & Friederich, G. E. Deep Sea Res. 25, 751–770 (1978).

  11. 11

    Smith, R. L. in Coastal Upwelling (ed. Richards, F. A.) 107–118 (American Geophysical Union, Washington, DC, 1980).

  12. 12

    Walsh, J. J. On the Nature of Continental Shelves (Academic, New York, 1988).

  13. 13

    Lee, T. N., Atkinson, L. P. & Legeckis, R. Deep Sea Res. 28, 347–378 (1981).

  14. 14

    Hogetsu, K. & Taga, N. in Productivity of Biocenoses in Coastal Regimes of Japan (eds Hogetsu, K., Hatanaka, M., Hanaoka, T. & Kawamura, T.) 31–172 (University of Tokyo, 1977).

  15. 15

    Walsh, J. J., Dieterle, D. A., Meyers, M. B. & Muller-Karger, F. E. Prog. Oceanogr. 23, 245–301 (1989).

  16. 16

    Eisman, D. & Van Bennekom, A. J. Hydrol. Newsl. Spec. Publ. 6, 25–48 (1971).

  17. 17

    Lee, T. N. & Pietrafesa, L. J. Prog. Oceanogr. 19, 267–312 (1987).

  18. 18

    Brockman, U., Billen, G. & Gieskes, W. W. in Polution of the North Sea (eds Salomons, W., Bayne, B. L., Duursma, E. K. & Forstner, U.) 348–389 (Springer, Berlin, 1988).

  19. 19

    Takahashi, M. & Hori, T. Mar. Biol. 79, 177–186 (1984).

  20. 20

    Aagaard, K., Pease, C. H. & Salo, S. A. NOAA Tech. Mem. ERL PMEL-82, 1–171 (1988).

  21. 21

    Walsh, J. J. et al. Limnol. Oceanogr. 23, 659–683 (1978).

  22. 22

    Beardsley, R. C., Chapman, D. C., Brink, K. H., Ramp, S. R. & Schlitz, R. J. phys. Oceanogr. 15, 713–771 (1985).

  23. 23

    Richey, J. E., Brock, J. T., Naiman, R. J., Wissmar, R. C. & Stallard, R. F. Science 207, 1348–1351 (1980).

  24. 24

    Walsh, J. J., Rowe, G. T., Iverson, R. L. & McRoy, C. P. Nature 291, 196–201 (1981).

  25. 25

    Fanning, K. A. Nature 339, 460–463 (1989).

  26. 26

    Knap, A., Jickells, T., Pszenny, A. & Galloway, J. Nature 320, 158–160 (1986).

  27. 27

    Walsh, J. J. Bioscience 34, 499–507 (1984).

  28. 28

    Christensen, J. P., Murray, J. W., Devol, A. H. & Codispoti, L. A. Global biogeochem. Cycles 1, 97–116 (1987).

  29. 29

    Devol, A. H. Nature 349, 319–321 (1991).

  30. 30

    Suzuki, Y. & Tanoue, E. in Ocean Margin Processes in Global Change (eds Mantoura, R. F., Martin, J. M. & Wollast, R. F.) (Wiley, New York, in the press).

  31. 31

    Jahnke, R. A., Reimers, C. E. & Craven, D. B. Nature 348, 50–54 (1990).

  32. 32

    Emerson, S. et al. Nature 329, 51–53 (1987).

  33. 33

    Alldredge, A. L. & Gotschalk, C. C. Deep Sea Res. 36, 159–171 (1989).

  34. 34

    Wroblewski, J. S., Sarmiento, J. L. & Flierl, G. R. Global biogeochem. Cycles 2, 199–218 (1988).

  35. 35

    Eppley, R. W., Renger, E. H. & Harrison, W. G. Limnol. Oceanogr. 24, 483–494 (1979).

  36. 36

    King, F. D. & Devol, A. H. Limnol. Oceanogr. 24, 645–651 (1979).

  37. 37

    Bakun, A. Science 247, 198–201 (1990).

  38. 38

    Dietrich, G. General Oceanography Chart 4 (Wiley, New York, 1963).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Walsh, J. Importance of continental margins in the marine biogeochemical cycling of carbon and nitrogen. Nature 350, 53–55 (1991) doi:10.1038/350053a0

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.