Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Fine-scale heterogeneity in the Earth's inner core

Abstract

The seismological properties of the Earth's inner core have become of particular interest as we understand more about its composition and thermal state1,2. Observations of anisotropy and velocity heterogeneity in the inner core are beginning to reveal how it has grown and whether it convects3,4. The attenuation of seismic waves in the inner core is strong, and studies of seismic body waves5,6 have found that this high attenuation is consistent with either scattering or intrinsic attenuation5. The outermost portion of the inner core has been inferred to possess layering and to be less anisotropic than at greater depths7,8,9,10. Here we present observations of seismic waves scattered in the inner core which follow the expected arrival time of the body-wave reflection from the inner-core boundary. The amplitude of these scattered waves can be explained by stiffness variations of 1.2% with a scale length of 2 kilometres across the outermost 300 km of the inner core. These variations might be caused by variations in composition, by pods of partial melt in a mostly solid matrix or by variations in the orientation or strength of seismic anisotropy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Average seismic-wave amplitude arriving between 970 and 1,280 s after all events.
Figure 2: Location map of explosions, earthquakes, LASA, and midpoints of ray-paths.
Figure 3: Comparison of ICS with PcP for the 27 September 1971 and 29 August 1974 nuclear tests.
Figure 4: Stacks of inner-core scattering and noise amplitude.

Similar content being viewed by others

References

  1. Anderson, O. L. Mineral physics of iron and of the core. Rev. Geophys. 33, 429–441 (1995).

    Article  ADS  Google Scholar 

  2. Boehler, R. Temperatures in the Earth's core from melting point measurements of iron at high static pressures. Nature 363, 534– 536 (1993).

    Article  ADS  CAS  Google Scholar 

  3. Tanaka, S. & Hamaguchi, H. Degree one heterogeneity and hemispherical variation in anisotropy in the inner core from PKP(BC) - PKP(DF) times. J. Geophys. Res. 102, 2925–2938 (1997).

    Article  ADS  Google Scholar 

  4. Romanowicz, B., Li, X. D. & Durek, J. Anisotropy in the inner core—could it be due to low-order convection. Science 274, 963– 966 (1996).

    Article  ADS  CAS  Google Scholar 

  5. Cormier, V. F., Xu, L. & Choy, G. L. Seismic attenuation in the inner core: Viscoelastic or stratigraphic? Geophys. Res. Lett. 21, 4019–4022 (1998).

    Article  ADS  Google Scholar 

  6. Bhattacharyya, J., Shearer, P. M. & Masters, T. G. Inner core attenuation from short period PKP(BC) versus PKP(DF) waveforms. Geophys. J. Int. 114, 1–11 (1993).

    Article  ADS  Google Scholar 

  7. Song, X. & Helmberger, D. V. Seismic evidence for an inner core transition zone. Science 282, 924– 927 (1998).

    Article  ADS  CAS  Google Scholar 

  8. Souriau, A. & Souriau, M. Ellipticity and density at the inner core boundary from subcritical PKiKP and PcP data. Geophys. J. Int. 98, 39–54 ( 1989).

    Article  ADS  Google Scholar 

  9. Shearer, P. M. Constraints on inner core anisotropy from PKP(DF) travel times. J. Geophys. Res. 99, 19647–19659 (1994).

    Article  ADS  Google Scholar 

  10. Song, X. & Helmberger, D. V. Depth dependence of anisotropy of Earth's inner core. J. Geophys. Res. 100, 9805–9816 (1995).

    Article  ADS  Google Scholar 

  11. Capon, J. Analysis of Rayleigh-wave multipath at LASA. Bull. Seismol. Soc. Am. 60, 1701–1731 ( 1970).

    Google Scholar 

  12. Green, P. E., Frosch, R. A. & Romney, C. F. Principles of an experimental large aperture seismic array (LASA). Proc. IEEE 53, 1821– 1833 (1965).

    Article  Google Scholar 

  13. Engdahl, E. R., Flinn, E. A. & Romney, C. F. Seismic waves reflected from the Earth's inner core. Nature 228, 852–853 (1970).

    Article  ADS  CAS  Google Scholar 

  14. Shearer, P. M. & Masters, T. G. The density and shear velocity contrast at the inner core boundary. Geophys. J. Int. 102, 491–498 ( 1990).

    Article  ADS  Google Scholar 

  15. Buchbinder, G. G. R., Wright, C. & Poupinet, G. Observations of PKiKP at distances less than 110°. Bull. Seismol. Soc. Am. 63, 1699– 1707 (1973).

    Google Scholar 

  16. Wu, R. -S. & Aki, K. Elastic wave scattering by a random medium and the small-scale inhomogeneities in the lithosphere. J. Geophys. Res. 90, 10261–10273 (1985).

    Article  ADS  Google Scholar 

  17. Aki, K. & Richards, P. G. Quantitative Seismology: Theory and Methods Vols 1 and 2 (Freeman, San Francisco, 1980 ).

    Google Scholar 

  18. Dziewonski, A. M. & Anderson, D. L. Preliminary reference Earth model. Phys. Earth Planet Inter. 25 , 297–356 (1981).

    Article  ADS  Google Scholar 

  19. Widmer, R., Masters, T. G. & Gilbert, F. Spherically-symmetric attenuation within the Earth from normal mode data. Geophys. J. Int. 104, 541–553 (1991).

    Article  ADS  Google Scholar 

  20. Mao, H.-k. et al. Elasticity and rheology of iron above 220 GPa and the nature of the Earth's inner core. Nature 396, 741 –732 (1998).

    Article  ADS  CAS  Google Scholar 

  21. Mao, H.-k. et al. Correction—Elasticity and rheology of iron above 220 GPa and the nature of the Earth's inner core. Nature 399, 280 (1999).

    Article  ADS  CAS  Google Scholar 

  22. Stixrude, L. & Cohen, R. E. High-pressure elasticity of iron and the anisotropy of the Earth's core. Science 267 , 1972–1975 (1995).

    Article  ADS  CAS  Google Scholar 

  23. Jephcoat, A. & Olson, P. Is the inner core of the Earth pure iron? Nature 325, 332–335 (1987).

    Article  ADS  CAS  Google Scholar 

  24. Jeanloz, R. The nature of the Earth's core. Annu. Rev. Earth Planet. Sci. 18, 357–386 (1990).

    Article  ADS  Google Scholar 

  25. Song, X. D. & Richards, P. G. Seismological evidence for differential rotation of the Earth's inner core. Nature 382, 221–224 (1996).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Albuquerque Seismological Laboratory and specifically R. Woodward and H. Bolton for access to LASA data; we also thank P. Shearer, F. Xu, S. Persh and J. Green for comments on the manuscript. L. Knopoff generalized the formula for scattering to non-Poisson solids.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John E. Vidale.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vidale, J., Earle, P. Fine-scale heterogeneity in the Earth's inner core. Nature 404, 273–275 (2000). https://doi.org/10.1038/35005059

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35005059

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing