Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Single crystals of an ionic anthracene aggregate with a triplet ground state


Crystalline supramolecular aggregates consisting of charged organic molecules, held together through metal-cluster-mediated Coulomb interactions, have attracted interest owing to their unusual structural, chemical and electronic properties1,2,3. Aggregates containing metal cation clusters ‘wrapped’ by lipophilic molecular anions have, for example, been shown4,5 to be kinetically stable and soluble in nonpolar liquids such as saturated hydrocarbons. The formation of supramolecular aggregates can even be exploited to generate aromatic hydrocarbons that carry four negative charges and crystallize in the form of organic poly(metal cation) clusters6,7 or helical polymers8. Here we report the anaerobic crystallization of an ionic organic aggregate—a contact ion septuple consisting of a fourfold negatively charged ‘tripledecker’ of three anthracene molecules bridged by four solvated potassium cations. Its electronic ground state is shown experimentally, using temperature-dependent electron paramagnetic resonance spectroscopy, to be a triplet. Although the spins in this biradical ionic solid are separated by a considerable distance, density functional theory calculations9 indicate that the triplet ground state is 84 kJ mol-1 more stable than the first excited singlet state. We expect that the successful crystallization of the ionic solid we report here, and that of a covalent organic compound with a triplet ground state10 at room temperature, will stimulate further attempts to develop new triplet-ground-state materials for practical use.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1: Selected examples of anthracene anion salts.
Figure 2: Single-crystal structure of [(anthracene˙-) (K+2THF3)+2 anthracene2- (K+2THF3)+2 (anthracene˙-)] at 150 K.
Figure 3: Rabi oscillations of the EPR signal of a single crystal of [(anthracene)4-3(K+2THF3)+22]1.


  1. Lehn, J. M. Supramolecular Chemistry, Concepts and Perspectives (VCH, Weinheim, 1995).

    Book  Google Scholar 

  2. Müller, A., Reuter, H. & Dillingers, S. Supramolecular inorganic chemistry: small guests in small and large hosts. Angew. Chem. Int. Edn Engl. 34, 2326–2361 (1995).

    Google Scholar 

  3. Müller, A., Shah, S. Q. N., Bögge, H. & Schmidtmann, M. Molecular growth from a Mo176 to a Mo248 cluster. Nature 397, 48–50 ( 1999).

    Article  ADS  Google Scholar 

  4. Bock, H., Lehn, J. M., Pauls, J., Holl, S. & Krenzel, V. Sodium salts of the bipyridine dianion polymer[(bpy)2-{Na+(dme)}2]x cluster [(Na8O)6+Na+6(bpy)2-6(tmeda)6], and monomer [(bpy)2-{Na+(pmdta)}2]. Angew. Chem. Int. Edn. Engl. 38, 952–955 (1999).

    Article  CAS  Google Scholar 

  5. Bock, H. et al. The lipophilically wrapped polyion aggregate {[Ba6Li 3O2]11+[-OC(CH3) 3]11 (OC4H8)3}, a face-sharing (octahedron + prismane) Ba6Li3O2 polyhedron in a hydrocarbon ellipsoid: preparation, single crystal structure analysis, and density functional calculations. Angew. Chem. Int. Edn. Engl. 34, 1353–1355 ( 1995).

    Article  CAS  Google Scholar 

  6. Bock, H., Gharagozloo-Hubmann, K., Näther, C., Nagel, N. & Havlas, Z. [{Na+(thf) 2}4(rubrene)4-] crystallisation and structure determination of a contact ion quintuple for the first π-hydrocarbon-tetraanion. Angew. Chem. Int. Edn Engl. 35, 631– 633 (1996).

    Article  CAS  Google Scholar 

  7. Sekiguchi, A., Matsuo, T. & Kabuto, C. Synthesis and characterisation of the tetralithium salt of an octasilyl-substituted trimethylencyclopentadien-tetraanion. Angew. Chem. Int. Edn Engl. 36, 2462– 2464 (1997).

    Article  CAS  Google Scholar 

  8. Bock, H., Gharagozloo-Hubmann, K., Sievert, M. & Havlas, Z. Synthesis, crystal growth and structure determination of [(6,13′-Dipentacene4)(KDME)4]∞: a twin-strand polymer helix. Angew. Chem. Int. Edn Engl. (submitted).

  9. Havlas, Z. & Bock, H. Bare molecular anions of the saturated hydrocarbons: density functional charge and spin distribution based on their single crystal structures. Collect. Czech. Chem. Commun. 63, 1245–1263 (1998).

    Article  CAS  Google Scholar 

  10. Bock, H., John, A., Havlas, Z. & Bats, J. W. The triplet biradical tris(3,5-di(tert-butyl)4-oxophenylene)methane: crystal structure, spin and charge distribution. Angew. Chem. Int. Edn Engl. 32 , 416–418 (1993).

    Article  Google Scholar 

  11. Bock, H., Näther, C., Ruppert, K. & Havlas, Z. Tetraphenylbutadiene disodium dimethoxyethene: solvent-shared and solvent-separated ion triples within a single crystal. J. Am. Chem. Soc. 114, 6907–6908 (1992).

    Article  CAS  Google Scholar 

  12. Bock, H., Näther, C., Ruppert, K. & Havlas, Z. Competing Na solvation: ether-shared and ether-separated triple ions of perylene dianion. J. Am. Chem. Soc. 117, 3869–3870 (1995).

    Article  CAS  Google Scholar 

  13. Bock, H. et al. Distorted molecules: perturbation design, preparation and structures. Angew. Chem. Int. Edn Engl. 31, 550– 581 (1992).

    Article  Google Scholar 

  14. Bock, H., Näther, C., Havlas, Z., John, A. & Arad, C. Ether-solvated sodium ions in salts containing π-hydrocarbon anions: crystallisation, structures and semiempirical solvation energies. Angew. Chem. Int. Edn Engl. 33, 875–878 (1994).

    Article  Google Scholar 

  15. Bock, H., Arad, C., Näther, C. & Havlas, Z. The structure of solvent-separated naphthalene and anthracene radical anions. J. Chem. Soc. Chem. Commune. 2393– 2394 (1995).

  16. Rhine, W. E., Davis, J. & Stucky, G. Anthracene dianion dilithium bis(TMEDA). J. Am. Chem. Soc. 97, 2079–2085 (1975).

    Article  CAS  Google Scholar 

  17. Stoll, S., Jeschke, G., Willer, M. & Schweiger, A. Nutation-frequency correlated EPR spectroscopy: the PEANUT experiment. J. Magn. Reson. 130, 86–96 ( 1998).

    Article  ADS  CAS  Google Scholar 

Download references


We thank T. Hauck for the first crystal growth, C. Näther and S. Holl for structure determination, V. Krenzel for graphics, and J. T. Töring & H. Käß for EPR measurements. This work was supported by the Deutsche Forschungsgemeinschaft, the Fonds der Chemischen Industrie and the State of Hesse.

Author information

Authors and Affiliations


Corresponding author

Correspondence to H. Bock.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bock, H., Gharagozloo-Hubmann, K., Sievert, M. et al. Single crystals of an ionic anthracene aggregate with a triplet ground state. Nature 404, 267–269 (2000).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing