Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Experimental entanglement of four particles

Abstract

Quantum mechanics allows for many-particle wavefunctions that cannot be factorized into a product of single-particle wavefunctions, even when the constituent particles are entirely distinct. Such ‘entangled’ states explicitly demonstrate the non-local character of quantum theory1, having potential applications in high-precision spectroscopy2, quantum communication, cryptography and computation3. In general, the more particles that can be entangled, the more clearly nonclassical effects are exhibited4,5—and the more useful the states are for quantum applications. Here we implement a recently proposed entanglement technique6 to generate entangled states of two and four trapped ions. Coupling between the ions is provided through their collective motional degrees of freedom, but actual motional excitation is minimized. Entanglement is achieved using a single laser pulse, and the method can in principle be applied to any number of ions.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Entanglement scheme for two particles.
Figure 2: Determination of ρ(↑↓).

References

  1. Bell, J. Speakable and Unspeakable in Quantum Mechanics (Cambridge Univ. Press, 1987).

    MATH  Google Scholar 

  2. Bollinger, J., Itano, W. M., Wineland, D. & Heinzen, D. Optimal frequency measurements with maximally correlated states. Phys. Rev. A 54, R4649–R4652 (1996).

    ADS  CAS  Article  Google Scholar 

  3. Lo, H.-K., Popescu, S. & Spiller, T. (eds) Introduction to Quantum Computation and Information (World Scientific, Singapore, 1997).

    MATH  Google Scholar 

  4. Pan, J.-W., Bouwmeester, D., Daniell, M., Weinfurter, H. & Zeilinger, A. Experimental test of quantum non-locality in three-photon Greenberger–Horne–Zeilinger entanglement. Nature 403, 515–519 ( 2000).

    ADS  CAS  Article  Google Scholar 

  5. Mermin, N. D. Extreme quantum entanglement in a superposition of macroscopically distinct states. Phys. Rev. Lett. 65, 1838– 1840 (1990).

    ADS  MathSciNet  CAS  Article  Google Scholar 

  6. Mølmer, K. & Sørensen, A. Multiparticle entanglement of hot trapped ions. Phys. Rev. Lett. 82, 1835–1838 (1999).

    ADS  Article  Google Scholar 

  7. Bouwmeester, D., Pan, J.-W., Daniell, M., Weinfurter, H. & Zeilinger, A. Observation of three-photon Greenberger-Horne-Zeilinger entanglement. Phys. Rev. Lett. 82, 1345– 1349 (1999).

    ADS  MathSciNet  CAS  Article  Google Scholar 

  8. Kwiat, P. et al. New high-intensity source of polarization-entangled photon pairs. Phys. Rev. Lett. 75, 4337– 4341 (1995).

    ADS  CAS  Article  Google Scholar 

  9. Tittle, W., Brendel, J., Zbinden, H. & Gisin, N. Violation of Bell inequalities by photons more than 10 km apart. Phys. Rev. Lett. 81, 3565–3566 ( 1998).

    ADS  Google Scholar 

  10. Hagley, E. et al. Generation of Einstein-Podolsky-Rosen pairs of atoms. Phys. Rev. Lett. 79, 1–5 (1997).

    ADS  CAS  Article  Google Scholar 

  11. Cirac, J. & Zoller, P. Quantum computations with cold trapped ions. Phys. Rev. Lett. 74, 4091– 4094 (1995).

    ADS  CAS  Article  Google Scholar 

  12. Turchette, Q. et al. Deterministic entanglement of two trapped ions. Phys. Rev. Lett. 81, 3631–3634 (1998).

    ADS  CAS  Article  Google Scholar 

  13. Law, C. & Kimble, J. Deterministic generation of a bit-stream of single-photon pulses. J. Mod. Opt. 44, 2067–2074 (1997).

    ADS  CAS  Article  Google Scholar 

  14. Mølmer, K. & Sørensen, A. Entanglement and quantum computation with ions in thermal motion. Pre-print quant-ph/0002024 at 〈xxx.lanl.gov〉 (2000).

  15. King, B. et al. Cooling the collective motion of trapped ions to initialize a quantum register. Phys. Rev. Lett. 81, 1525 –2528 (1998).

    ADS  CAS  Article  Google Scholar 

  16. Milburn, G. Simulating nonlinear spin models in an ion trap. Pre-print quant-ph/9908037 at 〈xxx.lanl.gov〉 (1999).

  17. James, D. Quantum dynamics of cold trapped ions with applications to quantum computation. Appl. Phys. B 66, 181– 190 (1998).

    ADS  CAS  Article  Google Scholar 

  18. Turchette, Q. et al. Heating of trapped ions from the quantum ground state. Pre-print quant-ph/0002040 at 〈xxx.lanl.gov〉 (2000 ).

  19. Fitzgerald, R. What really gives a quantum computer its power? Phys. Today 53, 20–22 (2000).

    ADS  Google Scholar 

  20. Bennett, C. et al. Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722–725 (1996).

    ADS  CAS  Article  Google Scholar 

  21. Vedral, V., Plenio, M., Rippin, M. & Knight, P. Quantifying entanglement. Phys. Rev. Lett. 78, 2275– 2279 (1997).

    ADS  MathSciNet  CAS  Article  Google Scholar 

  22. Lewenstein, M. & Sanpera, A. Separability and entanglement of composite quantum systems. Phys. Rev. Lett. 80, 2261–2264 (1998).

    ADS  CAS  Article  Google Scholar 

  23. Wootters, W. K. Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245–2248 (1998).

    ADS  CAS  Article  Google Scholar 

  24. Wineland, D. et al. Experimental issues in coherent quantum-state manipulation of trapped atomic ions. J. Res. NIST 103, 259–328 (1998).

    CAS  Article  Google Scholar 

  25. Preskill, J. Battling decoherence: the fault tolerant quantum computer. Phys. Today 52, 24–30 ( 1999).

    Article  Google Scholar 

  26. Vaidman, L., Goldenberg, L. & Wiesner, S. Error prevention scheme with four particles. Phys. Rev. A 54, R1745–R1748 (1996).

    ADS  CAS  Article  Google Scholar 

  27. Shor, P. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26, 1484–1509 (1997).

    MathSciNet  Article  Google Scholar 

  28. Grover, L. Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79, 325–328 (1997).

    ADS  CAS  Article  Google Scholar 

  29. Eberhard, P. Background level and counter efficiencies required for a loophole-free Einstein-Podolsky-Rosen experiment. Phys. Rev. A 47, R747– R750 (1993).

    ADS  CAS  Article  Google Scholar 

  30. Nägerl, H. et al. Laser addressing of individual ions in a linear ion trap. Phys. Rev. A 60, 145–148 (1999).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We thank J. Bollinger and E. A. Cornell for comments on the manuscript. This work was supported by the US National Security Agency, Army Research Office and Office of Naval Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Monroe.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sackett, C., Kielpinski, D., King, B. et al. Experimental entanglement of four particles. Nature 404, 256–259 (2000). https://doi.org/10.1038/35005011

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35005011

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing