Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

North–south geological differences between the residual polar caps on Mars

Abstract

Polar processes can be sensitive indicators of global climate, and the geological features associated with polar ice caps can therefore indicate evolution of climate with time. The polar regions on Mars have distinctive morphologic and climatologic features: thick layered deposits, seasonal CO2 frost caps extending to mid latitudes, and near-polar residual frost deposits that survive the summer1,2. The relationship of the seasonal and residual frost caps to the layered deposits has been poorly constrained3,4, mainly by the limited spatial resolution of the available data. In particular, it has not been known if the residual caps represent simple thin frost cover or substantial geologic features. Here we show that the residual cap on the south pole is a distinct geologic unit with striking collapse and erosional topography; this is very different from the residual cap on the north pole, which grades into the underlying layered materials. These findings indicate that the differences between the caps are substantial (rather than reflecting short-lived differences in frost cover), and so support the idea of long-term asymmetry in the polar climates of Mars.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: North-polar residual cap topography.
Figure 2: South-polar residual cap topography.

Similar content being viewed by others

References

  1. James, P. B., Kieffer, H. H. & Paige, D. A. in Mars (eds Kieffer H., Jakosky, B., Snyder C. & Matthews, M.) 934–968 (Univ. Arizona Press, Tucson, 1992).

    Google Scholar 

  2. Jakosky, B. M. & Haberle, R. M. in Mars (eds Kieffer H., Jakosky, B., Snyder C. & Matthews, M.) 969–1016 (Univ. Arizona Press, Tucson, 1992).

    Google Scholar 

  3. Pollack, J. B., Colburn, D., Flasar, F. M., Kahn, R., Carlston, C. & Pidek, D. Properties and effects of dust particles suspended in the Martian atmosphere. J. Geophys. Res. 84, 2929–2945 (1979).

    Article  ADS  CAS  Google Scholar 

  4. Thomas, P. C., Herkenhoff, K., Howard, A. & Murray, B. in Mars (eds H. Kieffer, H., Jakosky, B., Snyder, C. & M. Matthews) 767–795 (Univ. Arizona Press, Tucson, 1992).

    Google Scholar 

  5. Smith, D. E. et al. The global topography of Mars and implications for surface evolution. Science 284, 1495– 1503 (1999).

    Article  ADS  CAS  Google Scholar 

  6. Farmer, C. B., Davies, D. W. & LaPorte, D. D. Mars: Northern summer ice cap—water vapor observations from Viking 2. Science 194, 1339– 1340 (1976).

    Article  ADS  CAS  Google Scholar 

  7. Kieffer, H. H. Mars south polar spring and summer temperatures. A residual CO2 frost. J. Geophys. Res. 84, 8263– 8288 (1979).

    Article  ADS  Google Scholar 

  8. Kieffer, H. H., Titus, T. N., Mullins, K. F. & Christiansen, P. R. Mars south polar spring and summer behavior observed by TES; seasonal cap evolution controlled by grain size. J. Geophys. Res. (submitted).

  9. Malin, M. C. et al. Early views of the Martian surface from the Mars Orbiter Camera of Mars Global Surveyor. Science 279, 1681 –1685 (1998).

    Article  ADS  CAS  Google Scholar 

  10. Howard, A. D., Cutts, J. A. & Blasius, K. R. Stratigraphic relationships within Martian polar cap deposits. Icarus 50, 161– 215 (1982).

    Article  ADS  Google Scholar 

  11. Zuber, M. T. et al. Observations of the north polar region of Mars from the Mars Orbiter Laser Altimeter. Science 282, 2053 –2060 (1998).

    Article  ADS  CAS  Google Scholar 

  12. Malin, M. C. & Edgett, K. S. The nature of layered outcrop expression in the martian polar layered terrains. Lunar Planet. Sci. 34, Abstr. no. 1055 (2000).

  13. James, P. B., Briggs, G., Barnes J. & Spruck, A. Seasonal recession of Mars’ south polar cap as seen by Viking. J. Geophys. Res. 84, 2889–2922 (1979).

    Article  ADS  CAS  Google Scholar 

  14. Paige, D. A. & Keegan, K. D. Thermal and albedo mapping of the polar regions of Mars using Viking thermal mapper observations: 2. South polar region. J. Geophys. Res. 99, 25993 –26031 (1994).

    Article  ADS  Google Scholar 

  15. Mellon, M. T. Small-scale polygonal features on Mars: Seasonal thermal contraction cracks in permafrost. J. Geophys. Res. 102, 25617 –25628 (1997).

    Article  ADS  Google Scholar 

  16. Plaut, J. J., Kahn, R., Guinness, E. A. & Arvidson, R. E. Accumulation of sedimentary debris in the south polar region of Mars and implications for climate history. Icarus 76, 357– 377 (1988).

    Article  ADS  Google Scholar 

  17. Herkenhoff, K. E. & Plaut, J. J. Surface ages and resurfacing rates of the polar layered deposits on Mars. Icarus (in the press).

  18. Mellon, M. T. Limits on the CO2 content of the martian polar deposits. Icarus 124, 268–279 ( 1996).

    Article  ADS  CAS  Google Scholar 

  19. Muhleman, D. O., Grossman, A. W. & Butler, B. J. Radar investigation of Mars, Mercury, and Titan. Annu. Rev. Earth Planet. Sci. 23, 337– 374 (1995).

    Article  ADS  CAS  Google Scholar 

  20. Schenk, P. M. & Moore, J. M. Stereo topography of the south polar region of Mars: Volatile inventory and Mars landing site. J. Geophys. Res. (in the press).

  21. Toon, O. B., Pollack, J. B., Ward, W., Burns, J. A. & Bilski, K. The astronomical theory of climatic change on Mars. Icarus 44, 552–607 (1980).

    Article  ADS  Google Scholar 

  22. Kieffer, H. H. & Zent, A. P. in Mars (eds H. Kieffer, H., Jakosky, B., Snyder, C. & M. Matthews) 1180 –1220 (Univ. Arizona Press, Tucson, 1992).

    Google Scholar 

  23. Ward, W. R. in Mars (eds Kieffer, H. H., Jakosky, B., Snyder, C. & Matthews, M. S) 298–320 (Univ. Arizona Press, Tucson 1992).

    Google Scholar 

  24. Cutts, J. A. & Lewis, B. H. Models of climate cycles recorded in Martian polar layered deposits. Icarus 50, 216–244 (1982).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

E. Jensen, M. Roth, M. Ryan, D. Sharman and J. Warren provided technical assistance. This work was supported in part by NASA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. C. Thomas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thomas, P., Malin, M., Edgett, K. et al. North–south geological differences between the residual polar caps on Mars. Nature 404, 161–164 (2000). https://doi.org/10.1038/35004528

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35004528

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing