Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Black holes and structure in an oscillating universe

Abstract

IF black holes exist in the contracting phase of a closed universe, they will give rise to a pressure and entropy catastrophe. First, the black holes absorb all the radiation; then their apparent horizons merge, and coalesce with the cosmological apparent horizon. All external observers become internal observers. It is possible that the internal metric of some of the merging black holes will be contracting, and others expanding. I suggest here that the resulting violent inhomogeneities can lead to a reexpansion in a significant portion of the universe. Global reexpansion, prompted by the merging of black holes, may thus begin in a semi-classical rather than fully quantum gravitational era, at densities greater than those at which nucleosynthesis occurs. Surviving black holes and inhomogeneities could initiate the formation of structures such as galaxies in the 'new' universe. The behaviour of such an oscillating universe would differ in detail from cycle to cycle.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Islam, J. N. The Ultimate Fate of the Universe 17–51 (Cambridge University Press, 1983).

    Book  Google Scholar 

  2. Barrow, J. D. & Tipler, F. J. The Anthropic Cosmological Principle (Oxford University Press, 1986).

    Google Scholar 

  3. Tolman, R. C. Relativity. Thermodynamics and Cosmology (Oxford University Press, 1934).

    MATH  Google Scholar 

  4. Misner, C. W., Thorne, K. S. & Wheeler, J. A. Gravitation (W. H. Freeman, San Francisco, 1973).

    Google Scholar 

  5. Rees, M. J. Observatory 89, 193–198 (1969).

    ADS  Google Scholar 

  6. Tout, C. A., Eggleton, P. P., Fabian, A. C. & Pringle, J. E. Mon. Not. R. astr. Soc. 238, 427–438 (1989).

    Article  ADS  Google Scholar 

  7. Hawking, S. W. & Ellis, G. F. R., The Large Scale Structure of Space-Time (Cambridge University Press. 1973).

    Book  Google Scholar 

  8. Bishop, N. T. Gen. Relativity Grav. 20, 573–581 (1988).

    Article  ADS  Google Scholar 

  9. Penrose, R. in Three Hundred Years of Gravitation (eds Hawking, S. W. & Israel, W.) 17–51 (Cambridge University Press, 1987).

    Google Scholar 

  10. Hartle, J. B. & Hawking, S. W. Phys. Rev. D28, 2960–2975 (1983).

    ADS  Google Scholar 

  11. Hawking, S. W. in Three Hundred Years of Gravitation (eds Hawking, S. W. & Israel, W.) 631–651 (Cambridge University Press, 1987).

    MATH  Google Scholar 

  12. Lynden-Bell, D. & Katz, J. Mon. Not. R. astr. Soc. 247, 651–661 (1990).

    ADS  Google Scholar 

  13. Carr, B. J. & Hawking, S. W. Mon. Not. R. astr. Soc. 168, 399–415 (1974).

    Article  ADS  Google Scholar 

  14. Sale, K. E. & Mathews, G. J. Astrophys. J. 309, L1–L4 (1986).

    Article  ADS  CAS  Google Scholar 

  15. Ryan, M. P. Astrophys. J. 177, L79–L84 (1972).

    Article  ADS  Google Scholar 

  16. Meszaros, P. Astr. Astrophys. 37, 225–228 (1974).

    ADS  Google Scholar 

  17. Meszaros, P. Astr. Astrophys. 38, 5–13 (1975).

    ADS  Google Scholar 

  18. Carr, B. J. Astr. Astrophys. 56, 377–383 (1977).

    ADS  Google Scholar 

  19. Ipser, J. R. & Price, R. H. Astrophys. J. 216, 578–590 (1977).

    Article  ADS  Google Scholar 

  20. Carr, B. J. & Rees, M. J. Mon. Not. R. astr. Soc. 206, 315–325 (1984).

    Article  ADS  Google Scholar 

  21. Carr, B. J. & Rees, M. J. Mon. Not. R. astr. Soc. 206, 801–818 (1984).

    Article  ADS  Google Scholar 

  22. Itoh, M., Inagaki, S. & Saslaw, W. C. Astrophys. J. 356, 315–331 (1990).

    Article  ADS  Google Scholar 

  23. Crane, P. & Saslaw, W. C. Astrophys. J. 301, 1–6 (1986).

    Article  ADS  Google Scholar 

  24. Itoh, M., Inagaki, S. & Saslaw, W. C. Astrophys. J. 331, 45–63 (1988).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saslaw, W. Black holes and structure in an oscillating universe. Nature 350, 43–45 (1991). https://doi.org/10.1038/350043a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/350043a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing