Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Eomesodermin is required for mouse trophoblast development and mesoderm formation

Abstract

The earliest cell fate decision in the mammalian embryo separates the extra-embryonic trophoblast lineage, which forms the fetal portion of the placenta, from the embryonic cell lineages. The body plan of the embryo proper is established only later at gastrulation, when the pluripotent epiblast gives rise to the germ layers ectoderm, mesoderm and endoderm. Here we show that the T-box gene Eomesodermin1 performs essential functions in both trophoblast development and gastrulation. Mouse embryos lacking Eomesodermin arrest at the blastocyst stage. Mutant trophoectoderm does not differentiate into trophoblast, indicating that Eomesodermin may be required for the development of trophoblast stem cells2. In the embryo proper, Eomesodermin is essential for mesoderm formation. Although the specification of the anterior–posterior axis and the initial response to mesoderm-inducing signals is intact in mutant epiblasts, the prospective mesodermal cells are not recruited into the primitive streak. Our results indicate that Eomesodermin defines a conserved molecular pathway controlling the morphogenetic movements of germ layer formation and has acquired a new function in mammals in the differentiation of trophoblast.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression of Eomesodermin from 3.5 to 14.5 d.p.c. as shown by β-galactosidase staining of EoLacZ heterozygotes (a, f, h–j) or whole-mount in situ hybridization (b–e, g), anterior aspects facing left.
Figure 2: Primary structure and targeted disruption of mouse Eomesodermin .
Figure 3: Morphology of mutant embryos.
Figure 4: Analysis of chimaeric embryos.

Similar content being viewed by others

References

  1. Ryan, K., Garrett, N., Mitchell, A. & Gurdon, J. B. Eomesodermin, a key early gene in Xenopus mesoderm differentiation. Cell 87, 989–1000 (1996).

    Article  CAS  PubMed  Google Scholar 

  2. Tanaka, S., Kunath, T., Hadjantonakis, A. K., Nagy, A. & Rossant, J. Promotion of trophoblast stem cell proliferation by FGF4. Science 282, 2072 –2075 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Herrmann, B. G., Labeit, S., Poustka, A., King, T. R. & Lehrach, H. Cloning of the T gene required in mesoderm formation in the mouse. Nature 343, 617– 622 (1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Papaioannou, V. E. & Silver, L. M. The T-box gene family. Bioessays 20, 9– 19 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Smith, J. C. T-Box genes: What they do and how they do it. Trends Genet. 15, 154–158 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Hancock, S. N., Agulnik, S. I., Silver, L. M. & Papaioannou, V. E. Mapping and expression analysis of the mouse ortholog of Xenopus eomesodermin. Mech. Dev. 81, 205–208 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Ciruna, B. G. & Rossant, J. Expression of the T-box gene eomesodermin during early mouse development. Mech. Dev. 81, 199–203 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Bulfone, A. et al. Expression pattern of the Tbr2 (Eomesodermin) gene during mouse and chick brain development. Mech. Dev. 84, 133–138 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Sutherland, A. E., Calarco, P. G. & Damsky, C. H. Expression and function of cell surface extracellular matrix receptors in mouse blastocyst attachment and outgrowth. J. Cell Biol. 106, 1331–1348 (1988).

    Article  CAS  PubMed  Google Scholar 

  10. Sutherland, A. E., Calarco, P. G. & Damsky, C. H. Developmental regulation of integrin expression at the time of implantation in the mouse embryo. Development 119, 1175–1186 (1993).

    CAS  PubMed  Google Scholar 

  11. Rossant, J. & Spence, A. Chimeras and mosaics in mouse mutant analysis. Trends Genet. 14, 358– 363 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Lawson, K. A., Meneses, J. J. & Pedersen, R. A. Clonal analysis of epiblast fate during germ layer formation in the mouse embryo. Development 113, 891–911 (1991).

    CAS  PubMed  Google Scholar 

  13. Thomas, P. & Beddington, R. Anterior primitive endoderm may be responsible for patterning the anterior neural plate in the mouse embryo. Curr. Biol. 6, 1487–1496 (1996).

    CAS  PubMed  Google Scholar 

  14. Beddington, R. S. & Robertson, E. J. Anterior patterning in mouse. Trends Genet. 14, 277 –284 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Tada, M., Casey, E. S., Fairclough, L. & Smith, J. C. Bix1, a direct target of Xenopus T-box genes, causes formation of ventral mesoderm and endoderm. Development 125, 3997–4006 (1998).

    CAS  PubMed  Google Scholar 

  16. Casey, E. S. et al. Bix4 is activated directly by VegT and mediates endoderm formation in Xenopus development. Development 126, 4193–4200 (1999).

    CAS  PubMed  Google Scholar 

  17. Pearce, J. J. H. & Evans, M. J. Mml, a mouse Mix-like gene expressed in the primitive streak. Mech. Dev. 87, 189–192 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Rossant, J. & Tamura-Lis, W. Effect of culture conditions on diploid to giant-cell transformation in postimplantation mouse trophoblast. J. Embryol. Exp. Morphol. 62, 217– 227 (1981).

    CAS  PubMed  Google Scholar 

  19. Feldman, B., Poueymirou, W., Papaioannou, V. E., DeChiara, T. M. & Goldfarb, M. Requirement of FGF-4 for postimplantation mouse development. Science 267, 246–249 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Arman, E., Haffner-Krausz, R., Chen, Y., Heath, J. K. & Lonai, P. Targeted disruption of fibroblast growth factor (FGF) receptor 2 suggests a role for FGF signaling in pregastrulation mammalian development. Proc. Natl Acad. Sci. USA 95 , 5082–5087 (1998).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liu, P. et al. Requirement for Wnt3 in vertebrate axis formation. Nature Genet. 22, 361–365 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Ding, J. et al. Cripto is required for correct orientation of the anterior–posterior axis in the mouse embryo. Nature 395, 702 –707 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Tam, P. P. & Behringer, R. R. Mouse gastrulation: the formation of a mammalian body plan. Mech. Dev. 68, 3–25 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Wilson, V., Manson, L., Skarnes, W. C. & Beddington, R. S. The T gene is necessary for normal mesodermal morphogenetic cell movements during gastrulation. Development 121, 877 –886 (1995).

    CAS  PubMed  Google Scholar 

  25. Wilson, V., Rashbass, P. & Beddington, R. S. Chimeric analysis of T (Brachyury) gene function. Development 117, 1321– 1331 (1993).

    CAS  PubMed  Google Scholar 

  26. Ciruna, B. G., Schwartz, L., Harpal, K., Yamaguchi, T. P. & Rossant, J. Chimeric analysis of fibroblast growth factor receptor-1 (Fgfr1) function: a role for FGFR1 in morphogenetic movement through the primitive streak. Development 124, 2829– 2841 (1997).

    CAS  PubMed  Google Scholar 

  27. Sun, X., Meyers, E. N., Lewandoski, M. & Martin, G. R. Targeted disruption of Fgf8 causes failure of cell migration in the gastrulating mouse embryo. Genes Dev. 13, 1834– 1846 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wattler, S., Russ, A., Evans, M. & Nehls, M. A combined analysis of genomic and primary protein structure defines the phylogenetic relationship of new members of the T-box family. Genomics 48, 24–33 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Hogan, B., Beddington, R., Constantini, F. & Lacy, E. Manipulating the Mouse Embryo (Cold Spring Harbor Laboratory Press, New York, 1994).

    Google Scholar 

Download references

Acknowledgements

We thank J. Gurdon, A. Bulfone, A. Zorn, N. Papalopulu, D. St. Johnston and R. Pedersen for discussion; X. Sun and F. Beck for communicating results before publication; G. Martin, C. Wright and R. Milner for gifts of probes and reagents; F. Wianny and A. Sossick for help with confocal microscopy; J. Wilson for technical assistance; J. Ferguson, P. Whiting and R. Plumridge for animal care. A.P.R. thanks W. Gross for continuing support and advice. This work was funded by grants from the Wellcome Trust. V.W. is supported by a Medical Research Council Career Development Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas P. Russ.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Russ, A., Wattler, S., Colledge, W. et al. Eomesodermin is required for mouse trophoblast development and mesoderm formation. Nature 404, 95–99 (2000). https://doi.org/10.1038/35003601

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35003601

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing