Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Stable sulphate clusters as a source of new atmospheric particles

Abstract

The formation of new atmospheric particles with diameters of 3–10 nm has been observed at a variety of altitudes and locations. Such aerosol particles have the potential to grow into cloud condensation nuclei, thus affecting cloud formation as well as the global radiation budget. In some cases, the observed formation rates of new particles have been adequately explained by binary nucleation, involving water and sulphuric acid1, but in certain locations—particularly those within the marine boundary layer1,2 and at continental sites1,3—observed ambient nucleation rates exceed those predicted by the binary scheme. In these locations, ambient sulphuric acid (H2SO4) levels are typically lower than required for binary nucleation1, but are sufficient for ternary nucleation4 (sulphuric acid–ammonia–water). Here we present results from an aerosol dynamics model with a ternary nucleation scheme which indicate that nucleation in the troposphere should be ubiquitous, and yield a reservoir of thermodynamically stable clusters 1–3 nm in size. We suggest that the growth of these clusters to a detectable size (> 3 nm particle diameter) is restricted by the availability of condensable vapour. Observations of atmospheric particle formation and growth from a continental and a coastal site support this hypothesis, indicating that a growth process including ternary nucleation is likely to be responsible for the formation of cloud condensation nuclei.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Nucleation rate as a function of sulphuric acid concentration for binary and ternary nucleation.
Figure 2: Simulated concentrations of particles.
Figure 3: The modelled and experimental particle number size distributions.

Similar content being viewed by others

References

  1. Weber, R. J. et al. New particle formation in the remote troposphere: A comparison of observations at various sites. Geophys. Res. Lett. 26, 307–310 (1999).

    Article  ADS  CAS  Google Scholar 

  2. Covert, D. S., Kapustin, V. N., Quinn, P. K. & Bates, T. S. New particle formation in the marine boundary layer. J. Geophys. Res. 97, 20581–20587 ( 1992).

    Article  ADS  Google Scholar 

  3. Kulmala, M., Toivonen, A., Mäkelä, J. M. & Laaksonen, A. Analysis of the growth of nucleation mode particles observed in boreal forest. Tellus 50, 449–462 (1998).

    Article  Google Scholar 

  4. Korhonen, P. et al. Ternary nucleation of H2SO4, NH 3, and H2O in the atmosphere. J. Geophys. Res.104, 26349–26353 ( 1999).

    Article  ADS  CAS  Google Scholar 

  5. Clarke, A. D. Atmospheric nuclei in the remote free troposphere. J. Atmos. Chem. 14, 479–488 (1992).

    Article  CAS  Google Scholar 

  6. Schröder, F. & Ström, J. Aircraft measurements of submicrometer aerosol particles (> 7 nm) in the midlatitude free troposphere and tropopause region. Atmos. Res. 44, 333 –356 (1997).

    Article  Google Scholar 

  7. Raes, F., Van Dingenen, R., Cuevas, E., Van Velthoven, P. F. J. & Prospero, J. M. Observations of aerosols in the free troposphere and marine boundary layer of the subtropical Northeast Atlantic: Discussion of processes determining their size distribution. J. Geophys. Res. 102, 21315– 21328 (1997).

    Article  ADS  CAS  Google Scholar 

  8. Hoppel, W. A., Frick, G. M., Fitzgerand, J. W. & Larson, R. E. Marine boundary layer measurements of new particle formation and the effects nonprecipitating clouds have on aerosol size distribution. J. Geophys. Res. 99, 14443–14459 ( 1994).

    Article  ADS  Google Scholar 

  9. Van Dingenen, R., Raes, F. & Jensen, N. R. Evidence for anthropogenic impact on number concentration and sulphate content of cloud-processed aerosol particles over the North Atlantic. J. Geophys. Res. 100, 21057– 21067 (1995).

    Article  ADS  CAS  Google Scholar 

  10. Weber, R. J. et al. A study of new particle formation and growth involving biogenic trace gas species measured during ACE-1. J. Geophys. Res. 103, 16385–16396 (1998).

    Article  ADS  CAS  Google Scholar 

  11. Clarke, A. D. et al. Particle production in the remote marine atmosphere: Cloud outflow and subsidence during ACE 1. J. Geophys. Res. 103, 16397–16409 (1998).

    Article  ADS  CAS  Google Scholar 

  12. O'Dowd, C. et al. On the photochemical production of biogenic new particles in the coastal boundary layer. Geophys. Res. Lett. 26, 1707–1710 (1999).

    Article  ADS  CAS  Google Scholar 

  13. Hegg, D. A., Radke, L. F. & Hobbs, P. V. Measurements of Aitken nuclei and cloud condensation nuclei in the marine atmosphere and their relation to the DMS-cloud-climate hypothesis. J. Geophys. Res. 96, 18727– 18733 (1991).

    Article  ADS  CAS  Google Scholar 

  14. Wiedensohler, A. et al. Occurrence of an ultrafine particle mode less than 20 nm in diameter in the marine boundary layer during Arctic summer and autumn. Tellus B 48, 213–222 (1996).

    Article  ADS  Google Scholar 

  15. Pirjola, L., Laaksonen, A., Aalto, P. & Kulmala, M. Sulphate aerosol formation in the Arctic boundary layer. J. Geophys. Res. 103, 8309–8322 (1998).

    Article  ADS  CAS  Google Scholar 

  16. Kerminen, V. -M. & Wexler, A. S. Post-fog nucleation of H2SO4-H2O particles in smog. Atmos. Environ. 28, 2399–2406 (1994).

    Article  ADS  CAS  Google Scholar 

  17. Kerminen, V. -M. & Wexler, A. S. The occurrence of sulphuric acid-water nucleation in plumes: Urban environment. Tellus B 48, 65–82 ( 1996).

    Article  ADS  Google Scholar 

  18. Mäkelä, J. M. et al. Observations of ultrafine aerosol particle formation and growth in boreal forest. Geophys. Res. Lett. 24, 1219–1222 (1997).

    Article  ADS  Google Scholar 

  19. Easter, R. C. & Peters, L. K. Binary homogeneous nucleation: Temperature and relative humidity fluctuations, nonlinearity, and aspects of new particle production in the atmosphere. J. Appl. Meteorol. 33, 775–784 ( 1994).

    Article  ADS  Google Scholar 

  20. Nilsson, E. D. & Kulmala, M. The potential for atmospheric mixing processes to enhance the binary nucleation rate. J. Geophys. Res. 103, 1381–1389 (1998).

    Article  ADS  CAS  Google Scholar 

  21. Doyle, G. J. Self nucleation in the sulphuric acid-water system. J. Chem. Phys. 35, 795–599 (1961).

    Article  ADS  CAS  Google Scholar 

  22. Raes, F., Saltelli, A. & Van Dingenen, R. Modelling formation and growth of H2SO 4-H2O aerosols: uncertainty analysis and experimental evaluation. J. Aerosol Sci. 23, 759– 771 (1992).

    Article  ADS  CAS  Google Scholar 

  23. Kulmala, M., Laaksonen, A. & Pirjola, L. Parameterizations for sulphuric acid/water nucleation rates. J. Geophys. Res. 103, 8301– 8308 (1998).

    Article  ADS  CAS  Google Scholar 

  24. Coffman, D. J. & Hegg, D. A. A preliminary study of the effect of ammonia on particle nucleation in the marine boundary layer. J. Geophys. Res. 100, 7147– 7160 (1995).

    Article  ADS  CAS  Google Scholar 

  25. Raes, F. & Janssens, A. Ion-induced aerosol formation in a H2O-H2SO4 system. 1. Extension of the classical theory and search for experimental evidence. J. Aerosol Sci. 16, 217–227 (1985).

    Article  ADS  CAS  Google Scholar 

  26. Stolzenburg, M. R. & McMurry, P. H. An ultrafine aerosol condensation nucleus counter. Aerosol Sci. Technol. 14, 48–65 (1991).

    Article  ADS  CAS  Google Scholar 

  27. Weber, R. J. et al. Inversion of ultrafine condensation nucleus counter pulse height distributions to obtain nonaparticle (3 to 10 nm) size distributions. J. Aerosol Sci. 29, 601– 615 (1998).

    Article  ADS  CAS  Google Scholar 

  28. Hörrak. U., Salm, J. & Tammet, H. Bursts of intermediate ions in atmospheric air. J. Geophys. Res.103, 13909–13915 (1998).

    Article  ADS  Google Scholar 

  29. Reischl, G. P., Mäkelä, J. M., Karch, R. & Necid, J. Bipolar charging of ultrafine particles in the size range below 10 nm. J. Aerosol Sci. 27, 931–949 (1996).

    Article  ADS  CAS  Google Scholar 

  30. Pirjola, L. Effects of the increased UV radiation and biogenic VOC emissions on ultrafine aerosol formation. J. Aerosol. Sci. 30, 355–367 (1999).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. J. Charlson and C. D. O'Dowd for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markku Kulmala.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kulmala, M., Pirjola, L. & Mäkelä, J. Stable sulphate clusters as a source of new atmospheric particles. Nature 404, 66–69 (2000). https://doi.org/10.1038/35003550

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35003550

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing