Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Fabrication of photonic crystals for the visible spectrum by holographic lithography


The term ‘photonics’ describes a technology whereby data transmission and processing occurs largely or entirely by means of photons. Photonic crystals are microstructured materials in which the dielectric constant is periodically modulated on a length scale comparable to the desired wavelength of operation. Multiple interference between waves scattered from each unit cell of the structure may open a ‘photonic bandgap’—a range of frequencies, analogous to the electronic bandgap of a semiconductor, within which no propagating electromagnetic modes exist1,2,3. Numerous device principles that exploit this property have been identified4,5,6,7,8. Considerable progress has now been made in constructing two-dimensional structures using conventional lithography3, but the fabrication of three-dimensional photonic crystal structures for the visible spectrum remains a considerable challenge. Here we describe a technique—three-dimensional holographic lithography—that is well suited to the production of three-dimensional structures with sub-micrometre periodicity. With this technique we have made microperiodic polymeric structures, and we have used these as templates to create complementary structures with higher refractive-index contrast.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Calculated constant-intensity surfaces in four-beam laser interference patterns designed to produce photonic crystals for the visible spectrum from photoresist.
Figure 2: Beam geometry for an f.c.c. interference pattern.
Figure 3: SEM images of photonic crystals generated by holographic lithography.
Figure 4: Three-dimensional reconstruction of the surface of an f.c.c. photonic crystal.
Figure 5: Angular dependence of the intensity of monochromatic light (wavelength, 633 nm) transmitted by the polymeric photonic crystal shown in Fig. 4.


  1. 1

    Yablonovitch, E. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987).

    ADS  CAS  Article  Google Scholar 

  2. 2

    Joannopoulos, J. D., Villeneuve, P. R. & Fan, S. Photonic crystals: putting a new twist on light. Nature 386, 143–149 ( 1997).

    ADS  CAS  Article  Google Scholar 

  3. 3

    Krauss, T. F. & De La Rue, R. M. Photonic crystals in the optical regime—past, present and future. Prog. Quantum Electron. 23, 51–96 ( 1999).

    ADS  CAS  Article  Google Scholar 

  4. 4

    Yablonovitch, E. et al. Donor and acceptor modes in photonic band structure. Phys. Rev. Lett. 67, 3380–3383 (1991).

    ADS  CAS  Article  Google Scholar 

  5. 5

    Lin, S.-Y., Chow, E., Hietala, V., Villeneuve, P. R. & Joannopoulos, J. D. Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal. Science 282, 274–276 ( 1998).

    ADS  CAS  Article  Google Scholar 

  6. 6

    Foresi, J. S. et al. Photonic-bandgap microcavities in optical waveguides. Nature 390, 143–145 ( 1997).

    ADS  CAS  Article  Google Scholar 

  7. 7

    Fan, S., Villeneuve, P. R. & Joannopoulos, J. D. High extraction efficiency of spontaneous emission from slabs of photonic crystals. Phys. Rev. Lett. 78, 3294–3297 (1997).

    ADS  Article  Google Scholar 

  8. 8

    John, S. & Wang, J. Quantum optics of localized light in a photonic band gap. Phys. Rev. B 43, 12772 –12789 (1991).

    ADS  CAS  Article  Google Scholar 

  9. 9

    Grynberg, G., Lounis, B., Verkerk, P., Courtois, J.-Y. & Salomon, C. Quantized motion of cold cesium atoms in two- and three-dimensional optical potentials. Phys. Rev. Lett. 70, 2249–2252 (1993).

    ADS  CAS  Article  Google Scholar 

  10. 10

    Yablonovitch, E., Gmitter, T. J. & Leung, K. M. Photonic band structure: the face-centred-cubic case employing nonspherical atoms. Phys. Rev. Lett. 67, 2295–2298 (1991).

    ADS  CAS  Article  Google Scholar 

  11. 11

    Ho, K. M., Chan, C. T. & Soukoulis, C. M. Existence of a photonic gap in periodic dielectric structures. Phys. Rev. Lett. 65, 3152– 3155 (1990).

    ADS  CAS  Article  Google Scholar 

  12. 12

    Berger, V., Gauthier-Lafaye, O. & Costard, E. Photonic band gaps and holography. J. Appl. Phys. 82, 60–64 ( 1997).

    ADS  CAS  Article  Google Scholar 

  13. 13

    Lee, K. Y. et al. Micromachining applications of a high resolution ultrathick photoresist. J. Vac. Sci. Technol. B 13, 3012–3016 (1995).

    CAS  Article  Google Scholar 

  14. 14

    Kapitonov, A. M. et al. Photonic stop band in a three-dimensional SiO2/TiO 2 lattice. Phys. Status Solidi A 165, 119–123 (1998).

    ADS  CAS  Article  Google Scholar 

  15. 15

    Holland, B. T., Blanford, C. F. & Stein, A. Synthesis of macroporous minerals with highly ordered three-dimensional arrays of spheroidal voids. Science 281, 538–540 (1998).

    ADS  CAS  Article  Google Scholar 

  16. 16

    Wijnhoven, J. E. G. J. & Vos, W. L. Preparation of photonic crystals made of air spheres in titania. Science 281, 802–804 (1998).

    ADS  CAS  Article  Google Scholar 

  17. 17

    Imhof, A. & Pine, D. J. Ordered macroporous materials by emulsion templating. Nature 389, 948– 951 (1997).

    ADS  CAS  Article  Google Scholar 

  18. 18

    Zakhidov, A. A. et al. Carbon structures with three-dimensional periodicity at optical wavelengths. Science 282, 897– 901 (1998).

    ADS  CAS  Article  Google Scholar 

  19. 19

    Subramanian, G., Manoharan, V. N., Thorne, J. D. & Pine, D. J. Ordered macroporous materials by colloidal assembly: a possible route to photonic bandgap materials. Adv. Mater. 11, 1261–1265 (1999).

    CAS  Article  Google Scholar 

  20. 20

    Mayo, M. J. Processing of nanocrystalline ceramics from ultrafine particles. Int. Mater. Rev. 41, 85–115 (1996).

    CAS  Article  Google Scholar 

  21. 21

    Klein, J. D. et al. Electrochemical fabrication of cadmium chalcogenide microdiode arrays. Chem. Mater. 5, 902– 904 (1993).

    CAS  Article  Google Scholar 

  22. 22

    Vlasov, Y. A., Yao, N. & Norris, D. J. Synthesis of photonic crystals for optical wavelengths from semiconductor quantum dots. Adv. Mater. 11, 165–169 (1999).

    CAS  Article  Google Scholar 

  23. 23

    Velev, O. D., Tessier, P. M., Lenhoff, A. M. & Kaler, E. W. A class of porous metallic nanostructures. Nature 401 , 548 (1999).

    ADS  CAS  Article  Google Scholar 

  24. 24

    Tarhan, İ. İ. & Watson, G. H. Photonic band structure of fcc colloidal crystals. Phys. Rev. Lett. 76, 315–318 (1996).

    ADS  CAS  Article  Google Scholar 

  25. 25

    Wanke, M. C., Lehmann, O., Müller, K., Wen, Q. Z. & Stuke, M. Laser rapid prototyping of photonic band-gap microstructures. Science 275, 1284 –1286 (1997).

    CAS  Article  Google Scholar 

  26. 26

    Cumpston, B. H. et al. Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication. Nature 398 , 51–54 (1999).

    ADS  CAS  Article  Google Scholar 

  27. 27

    Cheng, C. C. et al. New fabrication techniques for high quality photonic crystals. J. Vac. Sci. Technol. B 15, 2764– 2767 (1997).

    CAS  Article  Google Scholar 

  28. 28

    Noda, S., Yamamoto, N. & Sasaki, A. New realization method for three-dimensional photonic crystal in optical wavelength region. Jpn J. Appl. Phys. 35, L909–L912 (1996).

    ADS  CAS  Article  Google Scholar 

  29. 29

    Fleming, J. G. & Lin, S.-Y. Three-dimensional photonic crystal with a stop band from 1.35 to 1.95 µm. Opt. Lett. 24, 49–51 ( 1999).

    ADS  CAS  Article  Google Scholar 

  30. 30

    van Blaaderen, A., Ruel, R. & Wiltzius, P. Template-directed colloidal crystallization. Nature 385, 321–324 ( 1997).

    ADS  CAS  Article  Google Scholar 

Download references


We thank A. J. Wilkinson and the Department of Materials, University of Oxford, for use of scanning electron microscope facilities. This work was supported by the EPSRC/MOD/DERA Joint Grant Scheme, under the Microstructured Photonic Materials Initiative.

Author information



Corresponding author

Correspondence to A. J. Turberfield.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Campbell, M., Sharp, D., Harrison, M. et al. Fabrication of photonic crystals for the visible spectrum by holographic lithography. Nature 404, 53–56 (2000).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing