Molecular evidence regarding the origin of echolocation and flight in bats


Bats (order Chiroptera) are one of the few orders of mammals that echolocate and the only group with the capacity for powered flight. The order is subdivided into Microchiroptera and Megachiroptera, with an array of characteristics defining each group1, including complex laryngeal echolocation systems in microbats and enhanced visual acuity in megabats. The respective monophylies of the two suborders have been tacitly assumed, although microbat monophyly is uncorroborated by molecular data. Here we present a phylogenetic analysis of bat relationships using DNA sequence data from four nuclear genes and three mitochondrial genes (total of 8,230 base pairs), indicating that microbat families in the superfamily Rhinolophoidea are more closely related to megabats than they are to other microbats. This implies that echolocation systems either evolved independently in rhinolophoids and other microbats or were lost in the evolution of megabats. Our data also reject flying lemur (order Dermoptera) as the bat sister group, indicating that presumed shared derived characters for flying lemurs and bats2 are convergent features that evolved in association with gliding and flight, respectively.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Maximum likelihood trees with branch lengths drawn proportional to amount of sequence change and with maximum likelihood bootstrap figures indicated.
Figure 2: Bootstrap support using neighbour-joining with logdet distances, for various phylogenetic associations.


  1. 1

    Novacek, M. J. in Proceedings of the 5th International Bat Research Conference (eds Wilson, D. E. & Gardner, A. L. ) 317–330 (Texas Tech, Lubbock, 1980).

  2. 2

    Simmons, N. B. Bat relationships and the origin of flight. Symp. Zool. Soc. London 67, 27–43 (1995).

  3. 3

    Hill, J. E. & Smith,, J. D. in Bats: A Natural History (Heffers, England, 1984).

  4. 4

    Simmons, N. B. & Geisler, J. H. Phylogenetic relationships of Icaronycteris, Archaeonycteris, Hassianycteris and Palaeochiropteryx to extant bat lineages, with comments on the evolution of echolocation and foraging strategies in Microchiroptera. Bull. Am. Mus. Nat. Hist. 235, 1–182 (1998).

  5. 5

    Pumo,, D. E. et al. Complete mitochondrial genome of a neotropical fruit bat, Artibeus jamaicensis, and a new hypothesis of relationships of bats to other Eutherian mammals. J. Mol. Evol. 47, 709–717 (1998).

  6. 6

    Springer, M. S., Amrine, H. M., Burk, A. & Stanhope, M. J. Additional support for Afrotheria and Paenungulata, the performance of mitochondrial versus nuclear genes, and the impact of data partitions with heterogenous base composition. Syst. Biol. 48, 65–75 (1999).

  7. 7

    Swofford,, D. L. PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4. (Sinauer, Sunderland, MA, 1998).

  8. 8

    Cummings, M. P., Otto, S. P. & Wakeley, J. Sampling properties of DNA sequence data in phylogenetic analysis. Mol. Biol. Evol. 12, 814–822 (1995).

  9. 9

    Swofford, D. L., Olsen, G. J., Waddell, P. J. & Hillis,, D. M. in Molecular Systematics (eds Hillis, D. M., Moritz, C. & Mable, B. K.) 407–514 (Sinauer, Sunderland, MA, 1996).

  10. 10

    Hutcheon, J. M., Kirsh, J. A. W & Pettigrew,, J. D. Base-compositional biases and the bat problem. III.The question of microchiropteran monophyly. Phil. Trans. R. Soc. Lond. B 353, 607–617 (1998).

  11. 11

    Woodburne, M. O. & Swisher,, C. C. in Geochronology, Time Scales and Global Stratigraphic Correlation (eds Beggren, W. A., Kent, D. V., Aubry, M. & Hardenbol, J.) Special Publ. Soc. Sedim. Geol. 54 335–364 (Tulsa, Oklahoma, 1995).

  12. 12

    Altringham, J. D. Bats: Biology and Behaviour. (Oxford Univ. Press, New York, 1996).

  13. 13

    Miller, G. S. The families and genera of bats. Bull. US Natl Mus. 57, 1–282 (1907).

  14. 14

    Novacek, M. J. & Wyss, A. R. Higher-level relationships of the recent eutherian orders: morphological evidence. Cladistics 2, 257–287 (1986).

  15. 15

    Beard,, K. C. in Primates and their relatives in phylogenetic perspective (ed. MacPhee, R. D. E.) 63–90 (Plenum, New York, 1993).

  16. 16

    Rayner, J. M. V. The cost of being a bat. Nature 350, 383–384 (1991).

  17. 17

    Gould, E. Evidence for echolocation in the Tenrecidae of Madagascar. Proc. Am. Phil. Soc. 109, 352–360 (1965).

  18. 18

    Tomasi, T. E. Echolocation by the short-tailed shrew Blarina brevicauda. J. Mammal. 60, 751–759 (1979).

  19. 19

    Forsman, K. A. & Malmquist,, M. G. Evidence for echolocation in the common shrew, Sorex araneus. J. Zool. Lond. 216, 655–662 (1988).

  20. 20

    Speakman,, J. R & Racey, P. A. No cost of echolocation for bats in flight. Nature 350, 421–423 (1991).

  21. 21

    Kalko, E. K. V. Coupling of sound emission and wing-beat in naturally foraging European pipistrelle (Microchiroptera: Vespertilionidae). Folia Zool. 43, 363–376 (1994).

  22. 22

    Springer, M. S. et al. Endemic African mammals shake the phylogenetic tree. Nature 388, 61–64 (1997).

  23. 23

    Stanhope, M. J. et al. Molecular evidence for multiple origins of Insectivora and for a new order of endemic African insectivore mammals. Proc. Natl Acad. Sci. USA 95, 9967–9972 (1998).

  24. 24

    Kishino, H. & Hasegawa, M. Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order within Hominoidea. J. Mol. Evol. 29, 170–179.

  25. 25

    Templeton, A. R. Phylogenetic inference from restriction endonuclease cleavage site maps with particular reference to the evolution of humans and the apes. Evolution 37, 221–244 (1983).

  26. 26

    Lyons-Weiler, J., Hoelzer, G. A. & Tausch, R. J. Relative Apparent Synapomorphy Analysis (RASA) I: the statistical measurement of phylogenetic signal. Mol. Biol. Evol. 13, 749–757 (1996).

Download references


This work was supported by grants from the Training and Mobility of Researchers programme of the European Commission to M.J.S., and the National Science Foundation to M.S.S.

Author information

Correspondence to Michael J. Stanhope.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Teeling, E., Scally, M., Kao, D. et al. Molecular evidence regarding the origin of echolocation and flight in bats. Nature 403, 188–192 (2000) doi:10.1038/35003188

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.