Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structure of a ligand-binding intermediate in wild-type carbonmonoxy myoglobin

Abstract

Small molecules such as NO, O2, CO or H2 are important biological ligands that bind to metalloproteins to function crucially in processes such as signal transduction, respiration and catalysis. A key issue for understanding the regulation of reaction mechanisms in these systems is whether ligands gain access to the binding sites through specific channels and docking sites, or by random diffusion through the protein matrix. A model system for studying this issue is myoglobin, a simple haem protein. Myoglobin has been studied extensively by spectroscopy, crystallography, computation and theory1,2,3,4,5,6,7,8,9,10,11. It serves as an aid to oxygen diffusion but also binds carbon monoxide, a byproduct of endogenous haem catabolism. Molecular dynamics simulations3,4,5, random mutagenesis6 and flash photolysis studies7,8,9,10 indicate that ligand migration occurs through a limited number of pathways involving docking sites. Here we report the 1.4 Å resolution crystal structure of a ligand-binding intermediate in carbonmonoxy myoglobin that may have far-reaching implications for understanding the dynamics of ligand binding and catalysis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Position of the CO molecule in states A and B.
Figure 2: Position of the CO molecule in state D.

Similar content being viewed by others

References

  1. Antonini, E. and Brunori, M. Hemoglobin and Myoglobin in their Reactions with Ligands (North-Holland Pub. Co., Amsterdam, 1971).

    Google Scholar 

  2. Vojtchovský, J. et al. Crystal structures of myoglobin-ligand complexes at near-atomic resolution. Biophys. J. 77, 2153– 2174 (1999).

    Article  ADS  Google Scholar 

  3. Elber R. and Karplus, M. Multiple-conformational states of proteins: a molecular dynamics analysis of myoglobin. Science, 235, 318– 321 (1987).

    Article  ADS  Google Scholar 

  4. Carlson, M. L., Regan, R. M & Gibson, Q. H. Distal cavity fluctuations in myoglobin: protein motion and ligand diffusion. Biochem. 35, 1125–1136 (1996).

    Article  CAS  Google Scholar 

  5. Tilton, R. J. Jr et al. Computational studies of the interaction of myoglobin and xenon. J Mol. Biol, 192, 443– 456 (1986).

    Article  CAS  Google Scholar 

  6. Huang, X. & Boxer, S. G. Discovery of new ligand-binding pathways in myoglobin by random mutagenesis. Nature Struct. Biol. 1, 226–229 ( 1994).

    Article  CAS  Google Scholar 

  7. Austin, R. H. et al. Dynamics of ligand-binding to myoglobin. Biochem. 14, 5355–5373 ( 1975).

    Article  CAS  Google Scholar 

  8. Scott, E. E. & Gibson, Q. H. Ligand migration in sperm whale myoglobin. Biochemistry 36, 11909– 11917 (1997).

    Article  CAS  Google Scholar 

  9. McMahon, B. H. Energetics of protein fluctuations: Ligand binding to myoglobin and electron transfer in reaction center. Thesis, Univ. of Illinois at Urbana-Champaign, (1997).

  10. Chu, K. et al. Light-induced and thermal relaxation in a protein. Phys. Rev. Lett. 74, 2607–2610 (1995).

    Article  ADS  CAS  Google Scholar 

  11. Lim, M., Jackson, T. A. & Anfinrud, P. A. Ultrafast rotation and trapping of carbon monoxide dissociated from myoglobin. Nature Struct. Biol. 4, 209–214 (1997).

    Article  CAS  Google Scholar 

  12. Alben, J. O. et al. Infrared spectroscopy of photodissociated myoglobin. Proc. Natl Acad. Sci. USA 79, 3744– 3748 (1982).

    Article  ADS  CAS  Google Scholar 

  13. Powers, L. et al. Kinetic, structural and spectroscopic identification of geminate states of myoglobin: a ligand-binding site on the reaction pathway. Biochemistry 26, 4785–4796 (1987).

    Article  CAS  Google Scholar 

  14. Tilton, R. F. Jr., Kuntz, I. D. Jr. & Petsko, G. A. Cavities in proteins: structure of a metmyoglobin-xenon complex solved to 1. 9 Å. Biochemistry 23, 2849– 2857 (1984).

    Article  CAS  Google Scholar 

  15. Frauenfelder, H Sligar, S. G. & Wolynes, P. G. The energy landscapes and motions of proteins. Science 254, 1598–1603 ( 1991).

    Article  ADS  CAS  Google Scholar 

  16. Schlichting, I., Berendzen, J., Phillips, G. N. Jr. & Sweet, R. M. Crystal structure of photolysed myoglobin. Nature, 371, 808–812 ( 1994).

    Article  ADS  CAS  Google Scholar 

  17. Hartmann, H. et al. X-ray structure determination of a metastable state of carbonmonoxymyoglobin after photodissociation. Proc. Natl Acad. Sci. USA, 93, 7013–7016 (1996).

    Article  ADS  CAS  Google Scholar 

  18. Teng, T. Y., Srajer, V. & Moffat, K. Photolysis-induced structural changes in single crystals of carbonmonoxymyoglobin at 40 K. Nature Struct. Biol, 1, 701–705 (1994).

    Article  CAS  Google Scholar 

  19. Anfinrud, P., deVivie-Riedle, R. & Engel, V ., Ultrafast control and detection of molecular dynamics. Proc. Natl Acad. Sci. USA 96, 8328– 8329 (1999).

    Article  ADS  CAS  Google Scholar 

  20. Gibson, Q. H., Regan, R., Elber, R., Olson, J. S. & Carver, T. E. Distal pocket residues affect picosecond ligand recombination in myoglobin: an experimental and molecular dynamics study of position 29 mutants. J. Biol. Chem. 267, 22022– 22034 (1992).

    CAS  PubMed  Google Scholar 

  21. Quillin, M. L. et al. Structural and functional effects of the distal valine in myoglobin. J. Mol. Biol. 245, 416– 436 (1995).

    Article  CAS  Google Scholar 

  22. Kachalova, G. S., Popov, A. N. & Bartunik, H. D. A steric mechanism for inhibition of CO binding to haem proteins. Science 284, 473– 476 (1999).

    Article  ADS  CAS  Google Scholar 

  23. Abadan, Y. et al. Ligand binding to haem proteins V: light-induced relaxation in proximal mutants L89I and H97F of carbonmonoxymyoglobin. Biophys. J. 68, 2497–2504 ( 1995).

    Article  ADS  CAS  Google Scholar 

  24. Ahmed, A. M. et al. Evidence for proximal control of ligand specificity in haemproteins: absorption and Raman studies of cryogenically trapped photoproducts of ligand bound myoglobins. Chem. Phys. 158, 329– 352 (1991).

    Article  CAS  Google Scholar 

  25. Brunori, M. et al. Does picosecond protein dynamics have survival value? Trends Biochem. Sci. 24, 253–255 (1999).

    Article  CAS  Google Scholar 

  26. Montet, Y. et al. Gas access to the active site of Ni-Fe hydrogenases probed by X-ray crystallography and molecular dynamics. Nature Struct. Biol. 4, 523–526 ( 1997).

    Article  CAS  Google Scholar 

  27. Kabsch, W. Automatic processing of rotation diffraction data from crystals of originally unknown symmetry and cell constants. J. App. Crystallogr. 24, 795–800 (1993).

    Article  Google Scholar 

  28. Brünger, A. T. X-PLOR: A System for Crystallography and NMR, Version 3. 1 (Yale Univ. Press, New Haven, 1992).

    Google Scholar 

  29. Jones, T. A. et al. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 ( 1991).

    Article  Google Scholar 

  30. Esnouf, R. A. An extensively modified version of MolScript that includes greatly enhanced coloring capabilities. J. Mol. Graphics 15, 132–134 (1997)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was generously supported by the Human Frontiers Science Program (to I.S. and J.B.), the Bundesministerium für Bildung und Forschung (to I.S.) and the Richard and Anne-Liese Gielen-Leyendecker-Stiftung (to I.S.). Beamline X12C is supported by the US Department of Energy Offices of Health and Environmental Research and of Basic Energy Sciences, and by the National Science Foundation. We are grateful to H. Frauenfelder for stimulating discussions, G. Holtermann for expert technical assistance, and R. S. Goody for continuous support and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilme Schlichting.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chu, K., Vojtchovský, J., McMahon, B. et al. Structure of a ligand-binding intermediate in wild-type carbonmonoxy myoglobin. Nature 403, 921–923 (2000). https://doi.org/10.1038/35002641

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35002641

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing