Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A neurofibromatosis-1-regulated pathway is required for learning in Drosophila

Abstract

The tumour-suppressor gene Neurofibromatosis 1 (Nf1) encodes a Ras-specific GTPase activating protein (Ras-GAP)1,2,3,4,5. In addition to being involved in tumour formation6,7, NF1 has been reported to cause learning defects in humans8,9,10 and Nf1 knockout mice11. However, it remains to be determined whether the observed learning defect is secondary to abnormal development. The Drosophila NF1 protein is highly conserved, showing 60% identity of its 2,803 amino acids with human NF1 (ref. 12). Previous studies have suggested that Drosophila NF1 acts not only as a Ras-GAP but also as a possible regulator of the cAMP pathway that involves the rutabaga (rut)-encoded adenylyl cyclase13. Because rut was isolated as a learning and short-term memory mutant14,15, we have pursued the hypothesis that NF1 may affect learning through its control of the Rut-adenylyl cyclase/cAMP pathway. Here we show that NF1 affects learning and short-term memory independently of its developmental effects. We show that G-protein-activated adenylyl cyclase activity consists of NF1-independent and NF1-dependent components, and that the mechanism of the NF1-dependent activation of the Rut-adenylyl cyclase pathway is essential for mediating Drosophila learning and memory.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Rescue of the NF1 learning defect by inducible expression of the normal NF1 transgene.
Figure 2: Effects of the cAMP pathway on NF1-dependent learning and memory.
Figure 3: Biochemical assay of the effects of NF1 on AC activity.

Similar content being viewed by others

References

  1. Ballester, R. et al. The NF1 locus encodes a protein functionally related to mammalian GAP and yeast IRA proteins. Cell 63, 851 –859 (1990).

    Article  CAS  Google Scholar 

  2. Bernards, A. Neurofibromatosis type 1 and Ras-mediated signaling: filling in the GAPs. Biochim. Biophys. Acta 1242, 43– 59 (1995).

    PubMed  Google Scholar 

  3. Huson, S. M., Harper, P. S. & Compston, D. A. Von Recklinghausen neurofibromatosis. A clinical and population study in south-east Wales. Brain 111 , 1355–1381 (1988).

    Article  Google Scholar 

  4. McCormick, F. Ras signaling and NF1. Curr. Opin. Genet. Dev. 5, 51–55 (1995).

    Article  CAS  Google Scholar 

  5. Xu, G. F. et al. The catalytic domain of the neurofibromatosis type 1 gene product stimulates ras GTPase and complements ira mutants of S. cerevisiae. Cell 63, 835–841 (1990).

    Article  CAS  Google Scholar 

  6. Lowy, D. R. & Willumsen, B. M. Function and regulation of Ras. Annu. Rev. Biochem. 62, 851– 891 (1993).

    Article  CAS  Google Scholar 

  7. Jacks, T. et al. Tumour predisposition in mice heterozygous for a targeted mutation in NF1. Nature Genet. 7, 353– 361 (1994).

    Article  CAS  Google Scholar 

  8. Ferner, R. E., Hughes, R. A. & Weinman, J. Intellectual impairment in neurofibromatosis 1. J. Neurol. Sci. 138, 125–133 (1996).

    Article  CAS  Google Scholar 

  9. North, K., Joy, P., Yuille, D., Cocks, N. & Hutchins, P. Cognitive function and academic performance in children with neurofibromatosis type 1. Dev. Med. Child Neurol. 37, 427–436 (1995).

    Article  CAS  Google Scholar 

  10. North, K. et al. Specific learning disability in children with neurofibromatosis type 1: significance of MRI abnormalities. Neurology 44, 878–883 (1994).

    Article  CAS  Google Scholar 

  11. Silva, A. J. et al. A mouse model for the learning and memory deficits associated with neurofibromatosis type 1. Nature Genet. 15, 281–284 (1997).

    Article  CAS  Google Scholar 

  12. The, I. et al. Rescue of a Drosophila NF1 mutant phenotype by protein kinase A. Science 276, 791–794 (1997).

    Article  CAS  Google Scholar 

  13. Guo, H. F., The, I., Hannan, F., Bernards, A. & Zhong, Y. Requirement of Drosophila NF1 for activation of adenylyl cyclase by PACAP38-like neuropeptide. Science 276, 795–798 (1997).

    Article  CAS  Google Scholar 

  14. Livingstone, M. S., Sziber, P. P. & Quinn, W. G. Loss of calcium/calmudulin responsiveness in adenylate cyclase of rutagaba, a Drosophila learning mutant. Cell 37, 205–215 ( 1984).

    Article  CAS  Google Scholar 

  15. Han, P.-L., Levin, L. R., Reed, R. R. & Davis, R. L. Preferential expression of the Drosophila rutabaga gene in mushroom bodies, neural centers for learning in insects. Neuron 9, 619–627 (1992).

    Article  CAS  Google Scholar 

  16. Tully, T. & Quinn, W. G. Classical conditioning and retention in normal and mutant Drosophila melanogaster. J. Comp. Physiol. A Sens. Neural. Behav. Physiol. 157, 263– 277 (1985).

    Article  CAS  Google Scholar 

  17. de Belle, J. S. & Heisenberg, M. Associative odor learning in Drosophila abolished by chemical ablation of mushroom bodies. Science 263, 692– 695 (1994).

    Article  ADS  CAS  Google Scholar 

  18. Connolly, J. B. et al. Associative learning disrupted by impaired Gs signaling in Drosophila mushroom bodies. Science 274, 2104–2106 (1996).

    Article  ADS  CAS  Google Scholar 

  19. Grotewiel, M. S., Beck, C. D., Wu, K. H., Zhu, X. R. & Davis, R. L. Integrin-mediated short-term memory in Drosophila . Nature 391, 455–460 (1998).

    Article  ADS  CAS  Google Scholar 

  20. Dura, J.-M., Preat, T. & Tully, T. Identification of linotte, a new gene affecting learning and memory in Drosophila melanogaster. J. Neurogenetics 9, 1–14 (1993).

    Article  CAS  Google Scholar 

  21. Yin, J. C. P. et al. Induction of a dominant negative CREB transgene specifically blocks long-term memory in Drosophila. Cell 79, 49–58 (1994).

    Article  CAS  Google Scholar 

  22. Levin, L. R. et al. The Drosophila learning and memory gene rutabaga encodes a Ca2+/calmodulin-responsive adenylyl cyclase. Cell 68, 479–489 ( 1992).

    Article  CAS  Google Scholar 

  23. Byers, D., Davis, R. L. & Kiger, J. A. Defect in cyclic-AMP phosphodiesterase due to the dunce mutation of learning in Drosophila melanogaster. Nature 289, 79–81 ( 1981).

    Article  ADS  CAS  Google Scholar 

  24. Chen, C. N., Denome, S. & Davis, R. L. Molecular analysis of cDNA clones and the corresponding genomic coding region of the Drosophila dunce+ locus, the structure gene for cAMP phosphodiesterase. Proc. Natl Acad. Sci. USA 86, 3599–3603 ( 1986).

    Google Scholar 

  25. Jiang, J. & Struhl, G. Protein kinase A and hedgehog signaling in Drosophila limb development. Cell 80, 563–572 (1995).

    Article  CAS  Google Scholar 

  26. Mitts, M. R., Bradshaw-Rouse, J. & Heideman, W. Interactions between adenylyl cyclase and the yeast GTPase-activating protein IRA1. Mol. Cell. Biol. 11 , 4591–4598 (1991).

    Article  CAS  Google Scholar 

  27. Livingstone, M. S. Genetic dissection of Drosophila adenylate cyclase. Proc. Natl Acad. Sci. USA 82, 5992–5996 (1985).

    Article  ADS  CAS  Google Scholar 

  28. Bers, D. M., Patton, C. W. & Nuccitelli, R. A practical guide to the preparation of Ca2+ buffers. Methods. Cell. Biol. 40, 3–29 (1994).

    Article  CAS  Google Scholar 

  29. O'Connell, P. & Rosbash, M. Sequence, structure and codon preference of the Drosophila ribosomal protein 49 gene. Nucleic Acids Res. 12, 5495–5513 ( 1984).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Tully for help with behavioural assays, R. Davis for extensive comments on the manuscript, and A. Bernards for providing the fly stocks. This work was supported by a Pew Scholarship, grants from NIH, grants from Texas Neurofibromatosis foundation, NF Inc. Mass Bay Aere and Illinois NF Inc., Perkin fund, and donations from M. L. Rankowitz and S. H. Heffron to Y.Z., and by a National Neurofibromatosis Foundation Young Investigator Award to F.H.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, HF., Tong, J., Hannan, F. et al. A neurofibromatosis-1-regulated pathway is required for learning in Drosophila. Nature 403, 895–898 (2000). https://doi.org/10.1038/35002593

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35002593

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing